نُقدم في هذه المقالة طريقة، لإيجاد متحكم تكيّفيّ أمثل بالشكل المباشر للأنظمة الخطية
مستمرة الزمن، بدون معرفة المصفوفات الحركية للنظام. و تُوظف الطريقة المقترحة إحدى
تقنيات بحوث العمميات الذكية، و هي تقنية البرمجة الديناميكية التكيفية لحل معادلة ريكاتي
الجبرية بشكل تكراري، باستخدام معلومات مباشرة من الحالة و الدخل، و بدون الحاجة إلى
معرفة مُسبقة لحركيات النظام. و يُمكن بالإضافة لذلك إجراء كل التكرارات باستخدام
معلومات الحالة و الدخل ذاتها لمرات عديدة و على بعض الفترات الزمنية الثابتة. كما تم
في هذه المقالة تطوير خوارزمية عملية مباشرة، و تم تطبيقها لتصميم متحكم أمثل بمحرك
ديزل نفاث مع إعادة تدوير غاز العادم.
This paper presents a method for finding online adaptive optimal
controllers for continuous-time linear systems without knowing the
system dynamical matrices. The proposed method employs one of
Intelligent Operations Research Techniques, this technique is the
adaptive dynamic programming, to iteratively solve the algebraic
Riccati equation using the online information of state and input,
without requiring the a priori knowledge of the system dynamics. In
addition, all iterations can be conducted by using repeatedly the
same state and input information on some fixed time intervals. A
practical online algorithm is developed in this paper, and is applied
to the controller design for a turbocharged diesel engine with
exhaust gas recirculation.
المراجع المستخدمة
Al-Tamimi, A., Lewis, F. L., & Abu-Khalaf, M. (2007). Model-free Q-learning designs for linear discrete-time zero-sum games with application to H-infinity control. Automatica, 43(3), 473–481
(Baird, L.C.III. (1994). Reinforcement learning in continuous time: advantage updating. In Proceedings of IEEE international conference on neural networks. (pp.2448–2453
Bhasin, S., Sharma, N., Patre, P., & Dixon, W. E. (2011). Asymptotic tracking by a reinforcement learning-based adaptive critic controller. Journal of Control Theory and Applications, 9(3), 400–409