في السنوات الأخيرة نمت مشكلة تصنيف الكائنات في الصّور نتيجة لمتطلبات القطاع الصناعي.على الرّغم من تعدد التقنيات المستخدمة للمساعدة في عملية التصنيف SIFT Scale Invariant Feature Transforms، ORB Oriented Fast And Rotated Brief , SURF Speed Up Robust Features، إضافة لشبكات التعلم العميق Deep Learning Neural Network DNN والشبكات العصبونية الالتفافية Convolutional Neural Network CNN، فإن الأنظمة المقترحة لمعالجة هذه المشكلة تفتقر للحل الشّامل للصعوبات المتمثلة بوقت التّدريب الطّويل والذاكرة العائمة أثناء عملية التدريب، وانخفاض معدّل التصنيف. تعتبر الشبكات العصبونية الالتفافيةConvolutional Neural Networks (CNNs) من أكثر الخوارزميات استخداما لهذه المهمة، فقد كانت نموذجا حسابيا لتحليل البيانات الموجودة في الصور. تم اقتراح نموذج شبكة التفافية عميقة جديد لحل المشاكل المذكورة أعلاه. يهدف البحث إلى إظهار أداء نظام التّعرف باستخدام شبكاتCNNs على الذّاكرة المتاحة وزمن التدريب وذلك من خلال منهجة متغيرات مناسبة للشبكة العصبونية الالتفافية. قاعدة البيانات المستخدمة في هذا البحث هي CIFAR10 المكونة من60000 صورة ملونة تنتسب لعشرة أصناف، حيث أن كل 6000 صورة تكون لصنف من هذه الأصناف. يوجد 50000 صورة للتدريب و 10000 صورة للاختبار. حقق النموذج لدى اختباره على عينة من الصور المنتقاة من قاعدة البيانات CIFAR10 معدل تصنيف 98.87%.
In recent years, the problem of classifying objects in images has increased by using deep learning as a result of the industrial sector requirements. Despite of many algorithms used in this field, such as Deep Learning Neural Network DNN and Convolutional Neural Network CNN, the proposed systems to address this problem Lack of comprehensive solution to the difficulties of long training time and floating memory during the training process, low rating classification. Convolutional Neural Networks (CNNs), which are the most used algorithms for this task, were a mathematical pattern for analyzing images data. A new deep-traversal network pattern was proposed to solve the above problems. The aim of the research is to demonstrate the performance of the recognition system using CNNs networks on the available memory and training time by adapting appropriate variables for the bypass network. The database used in this research is CIFAR10, which consists of 60000 colorful images belonging to ten categories, as every 6,000 images are for a class of these items. Where there are 50,000 training images and 10,000 test tubes. When tested on a sample of selected images from the CIFAR10 database, the model achieved a rating classification of 98.87%.
المراجع المستخدمة
Roy, S. S., Ahmed, M., & Akhand, M. A. H.,”Noisy image classification using hybriddeep learning methods”, Journal of ICT, 18, No. 2 (April) 2018, pp: 233–269.
تدرس هذه المقالة منهجية جديدة لتحديد وجود العطل من عدمه، و تصنيف الاعطال في الوقت الحقيقي بالاعتماد على الشبكات العصبونية في خطوط نقل القدرة الكهربائية. تعتمد هذه الخوارزمية على استخدام إشارات الجهود، و التيارات بوصفها يمثل دخل للشبكات العصبونية بعد
يتم تطبيق مصنف النصوص بانتظام على النصوص الشخصية، وترك مستخدمي هذه المصنفين عرضة لخرق الخصوصية.نقترح حلا لتصنيف النص الذي يحفظه الخصوصية التي تعتمد على الشبكات العصبية التنافعية (CNNS) والحساب الآمن متعدد الأحزاب (MPC).تتيح طريقتنا استنتاج تسمية فئة
قمنا من خلال هذا البحث بتصميم برنامج يهدف إلى تحديد النقاط الحرجة التي يمكن أن
تسبب إنهيار التوتر، و بناء شبكة عصبونية ضمن بيئة برمجيات ماتلاب مهمتها التنبؤ بقيمة
الاستطاعة العظمى التي يمكن نقلها على نظام القدرة الكهربائية في ظروف انهيار التوتر
دو
يهدف البحث إلى تقديم دراسة مرجعيّة مفصلة عن استخدام الشبكات العصبونية الإلتفافية (CNNs) في استخراج الميزات (Features) من الصور.
وسيتطرق البحث إلى التعريف بمعنى الميزات (Features) الخاصة بالصور وأهميتها في تطبيقات معالجة الصورة.
وسيتم أيضاً التعريف
يقدم هذا البحث منظومة للتعرف على مسميات المخططات الزمنية، حيث يتم استخلاص المسميات من المخططات، التي هي عبارة عن صورة باستخدام التقسيم المكاني من أجل اقتطاع صور المسميات فقط. تُوحد أحجام صور المسميات باستخدام خوارزمية المتوسط لسببين؛ الأول تشكيل قاعد