We discuss a universality property of any covariant field theory in space-time expanded around pp-wave backgrounds. According to this property the space-time lagrangian density evaluated on a restricted set of field configurations, called universal s
ector, turns out to be same around all the pp-waves, even off-shell, with same transverse space and same profiles for the background scalars. In this paper we restrict our discussion to tensorial fields only. In the context of bosonic string theory we consider on-shell pp-waves and argue that universality requires the existence of a universal sector of world-sheet operators whose correlation functions are insensitive to the pp-wave nature of the metric and the background gauge flux. Such results can also be reproduced using the world-sheet conformal field theory. We also study such pp-waves in non-polynomial closed string field theory (CSFT). In particular, we argue that for an off-shell pp-wave ansatz with flat transverse space and dilaton independent of transverse coordinates the field redefinition relating the low energy effective field theory and CSFT with all the massive modes integrated out is at most quadratic in fields. Because of this simplification it is expected that the off-shell pp-waves can be identified on the two sides. Furthermore, given the massless pp-wave field configurations, an iterative method for computing the higher massive modes using the CSFT equations of motion has been discussed. All our bosonic string theory analyses can be generalised to the common Neveu-Schwarz sector of superstrings.
We study the interplay of crystal field splitting and Hund coupling in a two-orbital model which captures the essential physics of systems with two electrons or holes in the e_g shell. We use single site dynamical mean field theory with a recently de
veloped impurity solver which is able to access strong couplings and low temperatures. The fillings of the orbitals and the location of phase boundaries are computed as a function of Coulomb repulsion, exchange coupling and crystal field splitting. We find that the Hund coupling can drive the system into a novel Mott insulating phase with vanishing orbital susceptibility. Away from half-filling, the crystal field splitting can induce an orbital selective Mott state.
We present a critical review about the study of linear perturbations of matched spacetimes including gauge problems. We analyse the freedom introduced in the perturbed matching by the presence of background symmetries and revisit the particular case
of spherically symmetry in n-dimensions. This analysis includes settings with boundary layers such as brane world models and shell cosmologies.
The shape of the hadronic form factor f+(q2) in the decay D0 --> K- e+ nue has been measured in a model independent analysis and compared with theoretical calculations. We use 75 fb(-1) of data recorded by the BABAR detector at the PEPII electron-pos
itron collider. The corresponding decay branching fraction, relative to the decay D0 --> K- pi+, has also been measured to be RD = BR(D0 --> K- e+ nue)/BR(D0 --> K- pi+) = 0.927 +/- 0.007 +/- 0.012. From these results, and using the present world average value for BR(D0 --> K- pi+), the normalization of the form factor at q2=0 is determined to be f+(0)=0.727 +/- 0.007 +/- 0.005 +/- 0.007 where the uncertainties are statistical, systematic, and from external inputs, respectively.
Serre obtained the p-adic limit of the integral Fourier coefficient of modular forms on $SL_2(mathbb{Z})$ for $p=2,3,5,7$. In this paper, we extend the result of Serre to weakly holomorphic modular forms of half integral weight on $Gamma_{0}(4N)$ for
$N=1,2,4$. A proof is based on linear relations among Fourier coefficients of modular forms of half integral weight. As applications we obtain congruences of Borcherds exponents, congruences of quotient of Eisentein series and congruences of values of $L$-functions at a certain point are also studied. Furthermore, the congruences of the Fourier coefficients of Siegel modular forms on Maass Space are obtained using Ikeda lifting.
For positive semidefinite matrices $A$ and $B$, Ando and Zhan proved the inequalities $||| f(A)+f(B) ||| ge ||| f(A+B) |||$ and $||| g(A)+g(B) ||| le ||| g(A+B) |||$, for any unitarily invariant norm, and for any non-negative operator monotone $f$ on
$[0,infty)$ with inverse function $g$. These inequalities have very recently been generalised to non-negative concave functions $f$ and non-negative convex functions $g$, by Bourin and Uchiyama, and Kosem, respectively. In this paper we consider the related question whether the inequalities $||| f(A)-f(B) ||| le ||| f(|A-B|) |||$, and $||| g(A)-g(B) ||| ge ||| g(|A-B|) |||$, obtained by Ando, for operator monotone $f$ with inverse $g$, also have a similar generalisation to non-negative concave $f$ and convex $g$. We answer exactly this question, in the negative for general matrices, and affirmatively in the special case when $Age ||B||$. In the course of this work, we introduce the novel notion of $Y$-dominated majorisation between the spectra of two Hermitian matrices, where $Y$ is itself a Hermitian matrix, and prove a certain property of this relation that allows to strengthen the results of Bourin-Uchiyama and Kosem, mentioned above.
A rather non-standard quantum representation of the canonical commutation relations of quantum mechanics systems, known as the polymer representation has gained some attention in recent years, due to its possible relation with Planck scale physics. I
n particular, this approach has been followed in a symmetric sector of loop quantum gravity known as loop quantum cosmology. Here we explore different aspects of the relation between the ordinary Schroedinger theory and the polymer description. The paper has two parts. In the first one, we derive the polymer quantum mechanics starting from the ordinary Schroedinger theory and show that the polymer description arises as an appropriate limit. In the second part we consider the continuum limit of this theory, namely, the reverse process in which one starts from the discrete theory and tries to recover back the ordinary Schroedinger quantum mechanics. We consider several examples of interest, including the harmonic oscillator, the free particle and a simple cosmological model.
In this note we present three representations of a 248-dimensional Lie algebra, namely the algebra of Lie point symmetries admitted by a system of five trivial ordinary differential equations each of order forty-four, that admitted by a system of seven trivial ordinary differential equations each of order twenty-eight and that admitted by one trivial ordinary differential equation of order two hundred and forty-four.
The multisite phosphorylation-dephosphorylation cycle is a motif repeatedly used in cell signaling. This motif itself can generate a variety of dynamic behaviors like bistability and ultrasensitivity without direct positive feedbacks. In this paper,
we study the number of positive steady states of a general multisite phosphorylation-dephosphorylation cycle, and how the number of positive steady states varies by changing the biological parameters. We show analytically that (1) for some parameter ranges, there are at least n+1 (if n is even) or n (if n is odd) steady states; (2) there never are more than 2n-1 steady states (in particular, this implies that for n=2, including single levels of MAPK cascades, there are at most three steady states); (3) for parameters near the standard Michaelis-Menten quasi-steady state conditions, there are at most n+1 steady states; and (4) for parameters far from the standard Michaelis-Menten quasi-steady state conditions, there is at most one steady state.
The quadratic pion scalar radius, la r^2ra^pi_s, plays an important role for present precise determinations of pipi scattering. Recently, Yndurain, using an Omn`es representation of the null isospin(I) non-strange pion scalar form factor, obtains la
r^2ra^pi_s=0.75pm 0.07 fm^2. This value is larger than the one calculated by solving the corresponding Muskhelishvili-Omn`es equations, la r^2ra^pi_s=0.61pm 0.04 fm^2. A large discrepancy between both values, given the precision, then results. We reanalyze Yndurains method and show that by imposing continuity of the resulting pion scalar form factor under tiny changes in the input pipi phase shifts, a zero in the form factor for some S-wave I=0 T-matrices is then required. Once this is accounted for, the resulting value is la r^2ra_s^pi=0.65pm 0.05 fm^2. The main source of error in our determination is present experimental uncertainties in low energy S-wave I=0 pipi phase shifts. Another important contribution to our error is the not yet settled asymptotic behaviour of the phase of the scalar form factor from QCD.