Do you want to publish a course? Click here

Gas turbines are used as main engines to convert fuel energy into mechanical energy used to move the generator and thus produce electrical power at the power plants. When you use a gas turbine in the power plants, it must maintain a constant speed of the turbine and thus fixed frequency output of the current also must maintain the parameters of the turbine such as pressures and temperatures at the limits and thus extend the life of the turbine components and increased efficiency. there was a need for the design of control systems maintain a constant speed of the turbine and to avoid operating at others and allowed values. In this research, we modeled the gas turbine and solving the model using MATLAB/ SIMULINK program, and then design a proportional integral differential controller for gas turbine operating In Gandar Station
Research topic includes the construction of a mathematical model to study the effectiveness of the basic design of condensation of steam plants to develop thermoelectric centers dedicated to the production of electric power and water desalination. To maintain the thermal efficiency and maintain a minimum level of contamination , has been in the current study compared the amount of savings in consuming the amount of fuel as a result of the process of co-production of electricity and desalinated water in the proposed design, compared with the amount of fuel consumed as a result of the separate electric power production and water desalination process .In order to study the effect of this has been the design and evaporative desalination unit and multi-effect unit gas turbine and the basic termodinamics properties . the efficiency measure to develop the basic design of the steam plant.
The development of gas turbine needs to studying and development each of its components. In this paper we will focus on the study of the compressor used in gas turbines. So we can study it we will be using mathematical modeling, which aims to find a mathematical description of the system studied and study the dynamic behavior of it in order to improve his performance, and use mathematical modeling to save time and cost at the improvement and development of products or in the case of the creation of new products through simulation that enrich us all costly and timeconsuming testing stations. Also it helps us to clarify the physical phenomena or unwanted effects and enable us to determine the full parameters required in accurate design.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا