We say that a~Lie (super)algebra is ``symmetric if with every root (with respect to the maximal torus) it has its opposite of the same multiplicity. Over algebraically closed fields of positive characteristics we describe the deforms (results of deformations) of all known simple finite-dimensional symmetric Lie (super)algebras of rank $<9$, except for superizations of the Lie algebras with ADE root systems. The moduli of deformations of any Lie superalgebra constitute a supervariety. Any infinitesimal deformation given by any odd cocycle is integrable with an odd parameter running over a~supervariety. All deforms corresponding to odd cocycles are new. Among new results are classification of the deforms of the 29-dimensional Brown algebra in characteristic 3, of Weisfeiler-Kac algebras and orthogonal Lie algebras without Cartan matrix in characteristic 2. For the Lie (super)algebras considered, all cocycles are integrable, the deforms corresponding to the weight cocycles are usually linear in the parameter. Problem: describe isomorphic deforms. Appendix: For several modular analogs of complex simple Lie algebras, and simple Lie algebras indigenous to characteristics 3 and 2, we describe the space of cohomology with trivial coefficients. We show that the natural multiplication in this space is very complicated.
In a recent preprint, Y. Namikawa proposed a conjecture on Q-factorial terminalizations and their birational geometry of nilpotent orbits. He proved his conjecture for classical simple Lie algebras. In this note, we prove his conjecture for exceptional simple Lie algebras. For the birational geometry, contrary to the classical case, two new types of Mukai flops appear.
Let X be a smooth projective curve over an algebraically closed field of characteristic >2. Consider the dual pair H=GSO_{2m}, G=GSp_{2n} over X, where H splits over an etale two-sheeted covering of X. Write Bun_G and Bun_H for the stacks of G-torsors and H-torsors on X. We show that for mle n (respectively, for m>n) the theta-lifting functor from D(Bun_H) to D(Bun_G) (respectively, from D(Bun_G) to D(Bun_H)) commutes with Hecke functors with respect to a morphism of the corresponding L-groups involving the SL_2 of Arthur. So, they realize the geometric Langlands functoriality for the corresponding morphisms of L-groups. As an application, we prove a particular case of the geometric Langlands conjectures for GSp_4. Namely, we construct the automorphic Hecke eigensheaves on Bun_{GSp_4} corresponding to the endoscopic local systems on X.
We present a list of ``local axioms and an explicit combinatorial construction for the regular $B_2$-crystals (crystal graphs of highest weight integrable modules over $U_q(sp_4)$). Also a new combinatorial model for these crystals is developed.
Let $G$ be a simply connected algebraic group of type $B,C$ or $D$ over an algebraically closed field of characteristic 2. We construct a Springer correspondence for the dual vector space of the Lie algebra of $G$. In particular, we classify the nilpotent orbits in the duals of symplectic and orthogonal Lie algebras over algebraically closed or finite fields of characteristic 2.
Let $G$ be an adjoint algebraic group of type $B$, $C$, or $D$ over an algebraically closed field of characteristic 2. We construct a Springer correspondence for the Lie algebra of $G$. In particular, for orthogonal Lie algebras in characteristic 2, the structure of component groups of nilpotent centralizers is determined and the number of nilpotent orbits over finite fields is obtained.
The invariants of solvable Lie algebras with nilradicals isomorphic to the algebra of strongly upper triangular matrices and diagonal nilindependent elements are studied exhaustively. Bases of the invariant sets of all such algebras are constructed by an original purely algebraic algorithm based on Cartans method of moving frames.
The invariants of solvable triangular Lie algebras with one nilindependent diagonal element are studied exhaustively. Bases of the invariant sets of all such algebras are constructed using an original algebraic algorithm based on Cartans method of moving frames and the special technique developed for triangular and related algebras in [J. Phys. A: Math. Theor. 40 (2007), 7557-7572]. The conjecture of Tremblay and Winternitz [J. Phys. A: Math. Gen. 34 (2001), 9085-9099] on the number and form of elements in the bases is completed and proved.
The direct product of two Hilbert schemes of the same surface has natural K-theory classes given by the alternating Ext groups between the two ideal sheaves in question, twisted by a line bundle. We express the Chern classes of these virtual bundles in terms of Nakajima operators.
This article is the $mathrm{Z}_l$-version of my paper Monodromie du faisceau pervers des cycles evanescents de quelques varietes de Shimura simples in Invent. Math. 2009 vol 177 pp. 239-280, where we study the vanishing cycles of some unitary Shimura variety. The aim is to prove that the cohomology sheaves of this complexe are free so that, thanks to the main theorem of Berkovich on vanishing cycles, we can deduce that the $mathrm{Z}_l$-cohomology of the model of Deligne-Carayol is free. There will be a second article which will be the $mathrm{Z}_l$ version of my paper Conjecture de monodromie-poids pour quelques varites de Shimura unitaires in Compositio vol 146 part 2, pp. 367-403. The aim of this second article will be to study the torsion of the cohomology groups of these Shimura varieties.