Do you want to publish a course? Click here

A lead-glass hodoscope calorimeter that was constructed for use in the Jefferson Lab Real Compton Scattering experiment is described. The detector provides a measurement of the coordinates and the energy of scattered photons in the GeV energy range with resolutions of 5 mm and 6%/sqrt(E{gamma} [GeV]). Features of both the detector design and its performance in the high luminosity environment during the experiment are presented.
The MAJORANA Collaboration is constructing the MAJORANA DEMONSTRATOR, an ultra-low background, modular, HPGe detector array with a mass of 44-kg (29 kg 76Ge and 15 kg natGe) to search for neutrinoless double beta decay in Ge-76. The next generation of tonne-scale Ge-based neutrinoless double beta decay searches will probe the neutrino mass scale in the inverted-hierarchy region. The MAJORANA DEMONSTRATOR is envisioned to demonstrate a path forward to achieve a background rate at or below 1 count/tonne/year in the 4 keV region of interest around the Q-value of 2039 keV. The MAJORANA DEMONSTRATOR follows a modular implementation to be easily scalable to the next generation experiment. First, the prototype module was assembled; it has been continuously taking data from July 2014 to June 2015. Second, Module 1 with more than half of the total enriched detectors and some natural detectors has been assembled and it is being commissioned. Finally, the assembly of Module 2, which will complete MAJORANA DEMONSTRATOR, is already in progress.
Ultracold neutrons (UCNs) were produced in a 4 liter volume of superfluid helium using the PF1B cold neutron beam facility at the Institut Laue-Langevin and then extracted to a detector at room temperature. With a converter temperature of 1.08 K the number of accumulated UCNs was counted to be $91,!700 pm 300$. From this, we derive a volumetric UCN production rate of $(6.9 pm 1.7),mathrm{cm^{-3},s^{-1}}$, which includes a correction for losses in the converter during UCN extraction caused by a short storage time, but not accounting for UCN transport and detection efficiencies. The up-scattering rate of UCNs due to excitations in the superfluid was studied by scanning the temperature between 1.2-2.4 K. Using the temperature-dependent UCN production rate calculated from inelastic neutron scattering data in the analysis, the only UCN up-scattering process found to be present was from two-phonon scattering. Our analysis rules out contributions from the other scattering processes to $lesssim 10%$ of their predicted levels.
The beta decay of $^{192,190}$Pb has been studied using the total absorption technique at the ISOLDE(CERN) facility. The beta-decay strength deduced from the measurements, combined with QRPA theoretical calculations, allow us to infer that the ground states of the $^{192,190}$Pb isotopes are spherical. These results represent the first application of the shape determination method using the total absorption technique for heavy nuclei and in a region where there is considerable interest in nuclear shapes and shape effects.
A new method of accessing information on the symmetry free energy from yields of fragments produced in Fermi-energy heavy-ion collisions is proposed. Furthermore, by means of quantum fluctuation analysis techniques, correlations between extracted symmetry free-energy coefficients with temperature and density were studied. The obtained results are consistent with those of commonly used isoscaling techniques.
We present the first measurement of elliptic ($v_2$) and triangular ($v_3$) flow in high-multiplicity $^{3}$He$+$Au collisions at $sqrt{s_{_{NN}}}=200$ GeV. Two-particle correlations, where the particles have a large separation in pseudorapidity, are compared in $^{3}$He$+$Au and in $p$$+$$p$ collisions and indicate that collective effects dominate the second and third Fourier components for the correlations observed in the $^{3}$He$+$Au system. The collective behavior is quantified in terms of elliptic $v_2$ and triangular $v_3$ anisotropy coefficients measured with respect to their corresponding event planes. The $v_2$ values are comparable to those previously measured in $d$$+$Au collisions at the same nucleon-nucleon center-of-mass energy. Comparison with various theoretical predictions are made, including to models where the hot spots created by the impact of the three $^{3}$He nucleons on the Au nucleus expand hydrodynamically to generate the triangular flow. The agreement of these models with data may indicate the formation of low-viscosity quark-gluon plasma even in these small collision systems.
Using the DIANA data on the charge-exchange reaction $K^+n rightarrow pK^0$ on a bound neutron, in which the s-channel formation of the pentaquark baryon $Theta^+(1538)$ has been observed, we analyze the dependence of the background-subtracted $Theta^+ rightarrow pK^0$ signal on the $K^0$ emission angle in the $pK^0$ rest frame. In order to describe the observed $cosTheta_K^mathrm{cms}$ distribution, invoking the interference between the nonresonant s-wave and the $Theta^+$-mediated higher-wave contributions to the amplitude of the charge-exchange reaction is required at a 2.8$sigma$ level. The spin--parity assignment of 1/2$^-$ for the $Theta^+$ baryon is ruled out at a statistical level of 2.9 standard deviations. A physically-meaningful selection in $cosTheta_K^mathrm{cms}$ based on the observed angular dependence of the $Theta^+ rightarrow pK^0$ signal allows to boost the statistical significance of the signal up to 7.1 standard deviations. This is far in excess of previously reported signals and renders the $Theta^+$ existence more credible.
401 - E. Lienard , G. Ban , C. Couratin 2015
The experimental achievements and the results obtained so far with the LPCTrap device installed at GANIL are presented. The apparatus is dedicated to the study of the weak interaction at low energy by means of precise measurements of the BETA-NU angular correlation parameter in nuclear BETA decays. So far, the data collected with three isotopes have enabled to determine, for the first time, the charge state distributions of the recoiling ions, induced by shakeoff process. The analysis is presently refined to deduce the correlation parameters, with the potential of improving both the constraint deduced at low energy on exotic tensor currents (6He1+) and the precision on the V u d element of the quark-mixing matrix (35Ar1+ and 19Ne1+) deduced from the mirror transitions dataset.
We find that several thresholds can contribute to the enhancements of the newly observed heavy pentaquark candidates $P_c^+(4380)$ and $P_c^+(4450)$ via the anomalous triangle singularity (ATS) transitions in the specific kinematics of $Lambda_bto J/psi K^- p$. Apart from the observed two peaks we find that another peaks around 4.5 GeV can also be produced by the ATS. We also show that the $Sigma_c^{(*)}$ can be produced at leading order in $Lambda_b$ decay. This process is different from the triangle diagram and its threshold enhancement only appears as CUSP effects if there is no pole structure or the ATS involved. The threshold interaction associated with the presence of the ATS turns out to be a general phenomenon and plays a crucial role in the understanding of candidates for exotic states.
We present high precision measurements of elliptic flow near midrapidity ($|y|<1.0$) for multi-strange hadrons and $phi$ meson as a function of centrality and transverse momentum in Au+Au collisions at center of mass energy $sqrt{s_{NN}}=$ 200 GeV. We observe that the transverse momentum dependence of $phi$ and $Omega$ $v_{2}$ is similar to that of $pi$ and $p$, respectively, which may indicate that the heavier strange quark flows as strongly as the lighter up and down quarks. This observation constitutes a clear piece of evidence for the development of partonic collectivity in heavy-ion collisions at the top RHIC energy. Number of constituent quark scaling is found to hold within statistical uncertainty for both 0-30$%$ and 30-80$%$ collision centrality. There is an indication of the breakdown of previously observed mass ordering between $phi$ and proton $v_{2}$ at low transverse momentum in the 0-30$%$ centrality range, possibly indicating late hadronic interactions affecting the proton $v_{2}$.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا