Do you want to publish a course? Click here

High-Energy Photon and Particle Effects onExoplanet Atmospheres and Habitability

74   0   0.0 ( 0 )
 Added by Jeremy Drake
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

It is now recognized that energetic stellar photon and particle radiation evaporates and erodes planetary atmospheres and controls upper atmospheric chemistry. Key exoplanet host stars will be too faint at X-ray wavelengths for accurate characterization using existing generation and future slated X-ray telescopes. Observation of stellar coronal mass ejections and winds are also beyond current instrumentation. In line with theCommittee on an Exoplanet Science Strategy recognition that holistic observational approaches are needed, we point out here that a full understanding of exoplanet atmospheres, their evolution and determination of habitability requires a powerful high-resolution X-ray imaging and spectroscopic observatory. This is the only capability that can: (1) characterize by proxy the crucial, difficult to observe, EUV stellar flux, its history and its variations for planet hosting stars; (2) observe the stellar wind; (3) detect the subtle Doppler signatures of coronal mass ejections.



rate research

Read More

Vacuum-UV (VUV) photodesorption from water-rich ice mantles coating interstellar grains is known to play an important role in the gas-to-ice ratio in star- and planet-forming regions. Quantitative photodesorption yields from water ice are crucial for astrochemical models. We aim to provide the first quantitative photon-energy dependent photodesorption yields from water ice in the VUV. This information is important to understand the photodesorption mechanisms and to account for the variation of the yields under interstellar irradiation conditions. Experiments have been performed on the DESIRS beamline at the SOLEIL synchrotron, delivering tunable VUV light, using the SPICES (Surface Processes and ICES) set-up. Compact amorphous solid water ice (H$_2$O and D$_2$O) has been irradiated from 7 to 13.5 eV. Quantitative yields have been obtained by detection in the gas phase with mass-spectrometry for sample temperatures ranging from 15 K to 100 K. Photodesorption spectra of H$_2$O (D$_2$O), OH (OD), H$_2$ (D$_2$) and O$_2$ peak around 9-10 eV and decrease at higher energies. Average photodesorption yields of intact water at 15 K are 5 $times$ 10$^{-4}$ molecule/photon for H$_2$O and 5 $times$ 10$^{-5}$ molecule/photon for D$_2$O over the 7-13.5 eV range. The strong isotopic effect can be explained by a differential chemical recombination between OH (OD) and H (D) photofragments originating from lower kinetic energy available for the OH photofragments upon direct water photodissociation and/or possibly by an electronic relaxation process. It is expected to contribute to water fractionation during the building-up of the ice grain mantles in molecular clouds and to favor OH-poor chemical environment in comet-formation regions of protoplanetary disks. The yields of all the detected species except OH (OD) are enhanced above (70 $pm$10) K, suggesting an ice restructuration at this temperature.
398 - Christiane Helling 2008
Clouds seem like an every-day experience. But -- do we know how clouds form on brown dwarfs and extra-solar planets? How do they look like? Can we see them? What are they composed of? Cloud formation is an old-fashioned but still outstanding problem for the Earth atmosphere, and it has turned into a challenge for the modelling of brown dwarf and exo-planetary atmospheres. Cloud formation imposes strong feedbacks on the atmospheric structure, not only due to the clouds own opacity, but also due to the depletion of the gas phase, possibly leaving behind a dynamic and still supersaturated atmosphere. I summarise the different approaches taken to model cloud formation in substellar atmospheres and workout their differences. Focusing on the phase-non-equilibrium approach to cloud formation, I demonstrate the inside we gain from detailed micro-physical modelling on for instance the material composition and grain size distribution inside the cloud layer on a Brown Dwarf atmosphere. A comparison study on four different cloud approaches in Brown Dwarf atmosphere simulations demonstrates possible uncertainties in interpretation of observational data.
327 - A. Riols 2014
The magnetorotational (MRI) dynamo has long been considered one of the possible drivers of turbulent angular momentum transport in astrophysical accretion disks. However, various numerical results suggest that this dynamo may be difficult to excite in the astrophysically relevant regime of magnetic Prandtl number (Pm) significantly smaller than unity, for reasons currently not well understood. The aim of this article is to present the first results of an ongoing numerical investigation of the role of both linear and nonlinear dissipative effects in this problem. Combining a parametric exploration and an energy analysis of incompressible nonlinear MRI dynamo cycles representative of the transitional dynamics in large aspect ratio shearing boxes, we find that turbulent magnetic diffusion makes the excitation and sustainment of this dynamo at moderate magnetic Reynolds number (Rm) increasingly difficult for decreasing Pm. This results in an increase in the critical Rm of the dynamo for increasing kinematic Reynolds number (Re), in agreement with earlier numerical results. Given its very generic nature, we argue that turbulent magnetic diffusion could be an important determinant of MRI dynamo excitation in disks, and may also limit the efficiency of angular momentum transport by MRI turbulence in low Pm regimes.
We report a development of a multi-color simultaneous camera for the 188cm telescope at Okayama Astrophysical Observatory in Japan. The instrument, named MuSCAT, has a capability of 3-color simultaneous imaging in optical wavelength where CCDs are sensitive. MuSCAT is equipped with three 1024x1024 pixel CCDs, which can be controlled independently. The three CCDs detect lights in $g_2$ (400--550 nm), $r_2$ (550--700 nm), and $z_{s,2}$ (820--920 nm) bands using Astrodon Photometrics Generation 2 Sloan filters. The field of view of MuSCAT is 6.1x6.1 arcmin$^2$ with the pixel scale of 0.358 arcsec per pixel. The principal purpose of MuSCAT is to perform high precision multi-color transit photometry. For the purpose, MuSCAT has a capability of self autoguiding which enables to fix positions of stellar images within ~1 pix. We demonstrate relative photometric precisions of 0.101%, 0.074%, and 0.076% in $g_2$, $r_2$, and $z_{s,2}$ bands, respectively, for GJ436 (magnitudes in $g$=11.81, $r$=10.08, and $z$=8.66) with 30 s exposures. The achieved precisions meet our objective, and the instrument is ready for operation.
The study of the composition of brown dwarf atmospheres helped to understand their formation and evolution. Similarly, the study of exoplanet atmospheres is expected to constrain their formation and evolutionary states. We use results from 3D simulations, kinetic cloud formation and kinetic ion-neutral chemistry to investigate ionisation processes which will affect their atmosphere chemistry: The dayside of super-hot Jupiters is dominated by atomic hydrogen, and not H$_2$O. Such planetary atmospheres exhibit a substantial degree of thermal ionisation and clouds only form on the nightside where lightning leaves chemical tracers (e.g. HCN) for possibly long enough to be detectable. External radiation may cause exoplanets to be enshrouded in a shell of highly ionised, H$_3^+$-forming gas and a weather-driven aurora may emerge. Brown dwarfs enable us to study the role of electron beams for the emergence of an extrasolar, weather-system driven aurora-like chemistry, and the effect of strong magnetic fields on cold atmospheric gases. Electron beams trigger the formation of H$_3^+$ in the upper atmosphere of a brown dwarf (e.g. LSR-J1835) which may react with it to form hydronium, H$_3$O$^+$, as a longer lived chemical tracer. Brown dwarfs and super-hot gas giants may be excellent candidates to search for H$_3$O$^+$ as an H$_3^+$ product.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا