Do you want to publish a course? Click here

Strong and weak convergence rates for slow-fast stochastic differential equations driven by $alpha$-stable process

130   0   0.0 ( 0 )
 Added by Xiaobin Sun
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

In this paper, we study the averaging principle for a class of stochastic differential equations driven by $alpha$-stable processes with slow and fast time-scales, where $alphain(1,2)$. We prove that the strong and weak convergence order are $1-1/alpha$ and $1$ respectively. We show, by a simple example, that $1-1/alpha$ is the optimal strong convergence rate.



rate research

Read More

In this paper, we consider the averaging principle for a class of McKean-Vlasov stochastic differential equations with slow and fast time-scales. Under some proper assumptions on the coefficients, we first prove that the slow component strongly converges to the solution of the corresponding averaged equation with convergence order $1/3$ using the approach of time discretization. Furthermore, under stronger regularity conditions on the coefficients, we use the technique of Poisson equation to improve the order to $1/2$, which is the optimal order of strong convergence in general.
In this paper, the strong averaging principle is researched for a class of H{o}lder continuous drift slow-fast SPDEs with $alpha$-stable process by the Zvonkins transformation and the classical Khasminkiis time discretization method. As applications, an example is also provided to explain our result.
219 - Xiaobin Sun , Yingchao Xie 2021
In this paper, the averaging principle is studied for a class of multiscale stochastic partial differential equations driven by $alpha$-stable process, where $alphain(1,2)$. Using the technique of Poisson equation, the orders of strong and weak convergence are given $1-1/alpha$ and $1-r$ for any $rin (0,1)$ respectively. The main results extend Wiener noise considered by Br{e}hier in [6] and Ge et al. in [17] to $alpha$-stable process, and the finite dimensional case considered by Sun et al. in [39] to the infinite dimensional case.
A large deviation principle is derived for stochastic partial differential equations with slow-fast components. The result shows that the rate function is exactly that of the averaged equation plus the fluctuating deviation which is a stochastic partial differential equation with small Gaussian perturbation. This also confirms the effectiveness of the approximation of the averaged equation plus the fluctuating deviation to the slow-fast stochastic partial differential equations.
This paper is devoted to proving the strong averaging principle for slow-fast stochastic partial differential equations with locally monotone coefficients, where the slow component is a stochastic partial differential equations with locally monotone coefficients and the fast component is a stochastic partial differential equations (SPDEs) with strongly monotone coefficients. The result is applicable to a large class of examples, such as the stochastic porous medium equation, the stochastic $p$-Laplace equation, the stochastic Burgers type equation and the stochastic 2D Navier-Stokes equation, which are the nonlinear stochastic partial differential equations. The main techniques are based on time discretization and the variational approach to SPDEs.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا