Do you want to publish a course? Click here

Rips construction and Kazhdan property (T)

51   0   0.0 ( 0 )
 Added by Denis Osin
 Publication date 2006
  fields
and research's language is English




Ask ChatGPT about the research

We show that for any non--elementary hyperbolic group $H$ and any finitely presented group $Q$, there exists a short exact sequence $1to Nto Gto Qto 1$, where $G$ is a hyperbolic group and $N$ is a quotient group of $H$. As an application we construct a hyperbolic group that has the same $n$--dimensional complex representations as a given finitely generated group, show that adding relations of the form $x^n=1$ to a presentation of a hyperbolic group may drastically change the group even in case $n>> 1$, and prove that some properties (e.g. properties (T) and FA) are not recursively recognizable in the class of hyperbolic groups. A relatively hyperbolic version of this theorem is also used to generalize results of Ollivier--Wise on outer automorphism groups of Kazhdan groups.



rate research

Read More

We construct several series of explicit presentations of infinite hyperbolic groups enjoying Kazhdans property (T). Some of them are significantly shorter than the previously known shortest examples. Moreover, we show that some of those hyperbolic Kazhdan groups possess finite simple quotient groups of arbitrarily large rank; they constitute the first known specimens combining those properties. All the hyperbolic groups we consider are non-positively curved k-fold generalized triangle groups, i.e. groups that possess a simplicial action on a CAT(0) triangle complex, which is sharply transitive on the set of triangles, and such that edge-stabilizers are cyclic of order k.
Let R be a finitely generated commutative ring with 1, let A be an indecomposable 2-spherical generalized Cartan matrix of size at least 2 and M=M(A) the largest absolute value of a non-diagonal entry of A. We prove that there exists an integer n=n(A) such that the Kac-Moody group G_A(R) has property (T) whenever R has no proper ideals of index less than n and all positive integers less than or equal to M are invertible in R.
We show that the automorphism group of a graph product of finite groups $Aut(G_Gamma)$ has Kazhdans property (T) if and only if $Gamma$ is a complete graph.
62 - Olga Varghese 2020
We show that for a large class $mathcal{W}$ of Coxeter groups the following holds: Given a group $W_Gamma$ in $mathcal{W}$, the automorphism group ${rm Aut}(W_Gamma)$ virtually surjects onto $W_Gamma$. In particular, the group ${rm Aut}(G_Gamma)$ is virtually indicable and therefore does not satisfy Kazhdans property (T). Moreover, if $W_Gamma$ is not virtually abelian, then the group ${rm Aut}(W_Gamma)$ is large.
We prove the existence of a close connection between spaces with measured walls and median metric spaces. We then relate properties (T) and Haagerup (a-T-menability) to actions on median spaces and on spaces with measured walls. This allows us to explore the relationship between the classical properties (T) and Haagerup and the
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا