Do you want to publish a course? Click here

Distiller: A Systematic Study of Model Distillation Methods in Natural Language Processing

تقطير: دراسة منهجية لأساليب تقطير النموذج في معالجة اللغة الطبيعية

451   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

Knowledge Distillation (KD) offers a natural way to reduce the latency and memory/energy usage of massive pretrained models that have come to dominate Natural Language Processing (NLP) in recent years. While numerous sophisticated variants of KD algorithms have been proposed for NLP applications, the key factors underpinning the optimal distillation performance are often confounded and remain unclear. We aim to identify how different components in the KD pipeline affect the resulting performance and how much the optimal KD pipeline varies across different datasets/tasks, such as the data augmentation policy, the loss function, and the intermediate representation for transferring the knowledge between teacher and student. To tease apart their effects, we propose Distiller, a meta KD framework that systematically combines a broad range of techniques across different stages of the KD pipeline, which enables us to quantify each component's contribution. Within Distiller, we unify commonly used objectives for distillation of intermediate representations under a universal mutual information (MI) objective and propose a class of MI-objective functions with better bias/variance trade-off for estimating the MI between the teacher and the student. On a diverse set of NLP datasets, the best Distiller configurations are identified via large-scale hyper-parameter optimization. Our experiments reveal the following: 1) the approach used to distill the intermediate representations is the most important factor in KD performance, 2) among different objectives for intermediate distillation, MI-performs the best, and 3) data augmentation provides a large boost for small training datasets or small student networks. Moreover, we find that different datasets/tasks prefer different KD algorithms, and thus propose a simple AutoDistiller algorithm that can recommend a good KD pipeline for a new dataset.



References used
https://aclanthology.org/
rate research

Read More

Knowledge Distillation (KD) is extensively used to compress and deploy large pre-trained language models on edge devices for real-world applications. However, one neglected area of research is the impact of noisy (corrupted) labels on KD. We present, to the best of our knowledge, the first study on KD with noisy labels in Natural Language Understanding (NLU). We document the scope of the problem and present two methods to mitigate the impact of label noise. Experiments on the GLUE benchmark show that our methods are effective even under high noise levels. Nevertheless, our results indicate that more research is necessary to cope with label noise under the KD.
In this paper, we propose a definition and taxonomy of various types of non-standard textual content -- generally referred to as noise'' -- in Natural Language Processing (NLP). While data pre-processing is undoubtedly important in NLP, especially wh en dealing with user-generated content, a broader understanding of different sources of noise and how to deal with them is an aspect that has been largely neglected. We provide a comprehensive list of potential sources of noise, categorise and describe them, and show the impact of a subset of standard pre-processing strategies on different tasks. Our main goal is to raise awareness of non-standard content -- which should not always be considered as noise'' -- and of the need for careful, task-dependent pre-processing. This is an alternative to blanket, all-encompassing solutions generally applied by researchers through standard'' pre-processing pipelines. The intention is for this categorisation to serve as a point of reference to support NLP researchers in devising strategies to clean, normalise or embrace non-standard content.
There are thousands of papers about natural language processing and computational linguistics, but very few textbooks. I describe the motivation and process for writing a college textbook on natural language processing, and offer advice and encouragement for readers who may be interested in writing a textbook of their own.
How can we design Natural Language Processing (NLP) systems that learn from human feedback? There is a growing research body of Human-in-the-loop (HITL) NLP frameworks that continuously integrate human feedback to improve the model itself. HITL NLP r esearch is nascent but multifarious---solving various NLP problems, collecting diverse feedback from different people, and applying different methods to learn from human feedback. We present a survey of HITL NLP work from both Machine Learning (ML) and Human-computer Interaction (HCI) communities that highlights its short yet inspiring history, and thoroughly summarize recent frameworks focusing on their tasks, goals, human interactions, and feedback learning methods. Finally, we discuss future studies for integrating human feedback in the NLP development loop.
This article explores the potential for Natural Language Processing (NLP) to enable a more effective, prevention focused and less confrontational policing model that has hitherto been too resource consuming to implement at scale. Problem-Oriented Pol icing (POP) is a potential replacement, at least in part, for traditional policing which adopts a reactive approach, relying heavily on the criminal justice system. By contrast, POP seeks to prevent crime by manipulating the underlying conditions that allow crimes to be committed. Identifying these underlying conditions requires a detailed understanding of crime events - tacit knowledge that is often held by police officers but which can be challenging to derive from structured police data. One potential source of insight exists in unstructured free text data commonly collected by police for the purposes of investigation or administration. Yet police agencies do not typically have the skills or resources to analyse these data at scale. In this article we argue that NLP offers the potential to unlock these unstructured data and by doing so allow police to implement more POP initiatives. However we caution that using NLP models without adequate knowledge may either allow or perpetuate bias within the data potentially leading to unfavourable outcomes.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا