Do you want to publish a course? Click here

Support marketing campaigns decisions in mobile Telecommunications to provide Location-Based services, by using Big Data technologies

دعم قرارات الحملات التّسويقيّة في شركات الاتصالات الخليوية لتقديم خدمات محددة الموقع باستخدام تقانات المعطيات الكبيرة

1827   0   51   0 ( 0 )
 Publication date 2017
and research's language is العربية
 Created by Shamra Editor




Ask ChatGPT about the research

Our proposed work is to introduce a combination of active and passive customer modes. And this will enhance the detecting the customers, even though they are not using their mobile by making a call.


Artificial intelligence review:
Research summary
تناقش هذه الأطروحة كيفية دعم قرارات الحملات التسويقية في شركات الاتصالات الخليوية باستخدام تقنيات البيانات الكبيرة. تركز الدراسة على تقديم خدمات محددة الموقع في الزمن الحقيقي، حيث يتم تحديد موقع الزبائن باستخدام معرّف الخلية وتقنيات أخرى. تعاني الأدوات الحالية من صعوبة التعامل مع الكميات الكبيرة من البيانات وتحليلها في الزمن الحقيقي، مما يشكل تحدياً كبيراً. تقترح الأطروحة نموذجاً يجمع بين الزبائن النشطين والخاملين، حيث يتم تحديد موقع الزبائن حتى وإن لم يقوموا بإجراء مكالمات. يتم استخدام تقنيات البيانات الكبيرة لتحليل البيانات في الزمن الحقيقي ودعم عملية اتخاذ القرار. كما يتم اقتراح إطار عمل مقارن لتحديد مساهمة العمل الحالي مقارنة بالأعمال الأخرى. تشمل الدراسة أيضاً تطوير نموذج لدعم قرار إطلاق الحملات التسويقية بناءً على تحليل البيانات في الزمن الحقيقي. يتم استخدام تقنيات مثل ARIMA لتحليل السلاسل الزمنية والتنبؤ بعدد الزبائن المتوقع في المناطق المستهدفة. تقدم الأطروحة أيضاً تحسينات على الإطار المرجعي للبيانات الكبيرة بإضافة طبقة دعم القرار لتحسين عملية اتخاذ القرار في الزمن الحقيقي. يتم تطبيق الدراسة على أربع مناطق في دمشق، حيث يتم جمع وتحليل بيانات الزبائن النشطين والخاملين لتقديم نتائج دقيقة وفعالة لدعم الحملات التسويقية.
Critical review
تقدم هذه الأطروحة مساهمة قيمة في مجال دعم قرارات الحملات التسويقية باستخدام تقنيات البيانات الكبيرة. ومع ذلك، يمكن تحسين العمل من خلال معالجة بعض النقاط. أولاً، تعتمد الأطروحة بشكل كبير على بيانات معرّف الخلية، والتي قد تكون غير دقيقة في بعض الحالات. يمكن تحسين الدقة باستخدام تقنيات تحديد الموقع الأخرى مثل GPS. ثانياً، تعتمد الأطروحة على خبرة مدير الحملة التسويقية لتقدير نسبة الزيادة في عدد الزبائن، مما قد يؤدي إلى عدم دقة في التقديرات. يمكن استخدام تقنيات التعلم الآلي لتحسين هذه التقديرات. ثالثاً، تقسيم المناطق إلى نشطة وغير نشطة يعتمد على معطيات سابقة، مما قد لا يعكس التغيرات الحالية في الكثافة السكانية. يمكن تحسين هذا الجانب باستخدام بيانات حديثة وتحليل ديناميكي. أخيراً، تواجه الأطروحة تحديات تقنية ولوجستية في تطبيق النموذج المقترح، مما يتطلب دعم من شركات الاتصالات لتوفير البنية التحتية اللازمة.
Questions related to the research
  1. ما هي المشكلة الرئيسية التي تعالجها الأطروحة؟

    تعالج الأطروحة مشكلة دعم قرارات الحملات التسويقية في شركات الاتصالات الخليوية باستخدام تقنيات البيانات الكبيرة لتحديد موقع الزبائن في الزمن الحقيقي وتحليل البيانات لدعم عملية اتخاذ القرار.

  2. ما هو النموذج المقترح في الأطروحة؟

    النموذج المقترح هو نموذج يجمع بين الزبائن النشطين والخاملين لتحديد موقعهم حتى وإن لم يقوموا بإجراء مكالمات، باستخدام تقنيات البيانات الكبيرة لتحليل البيانات في الزمن الحقيقي ودعم عملية اتخاذ القرار.

  3. ما هي التقنيات المستخدمة لتحليل البيانات في الأطروحة؟

    تستخدم الأطروحة تقنيات مثل ARIMA لتحليل السلاسل الزمنية والتنبؤ بعدد الزبائن المتوقع في المناطق المستهدفة، بالإضافة إلى تقنيات البيانات الكبيرة لتحليل البيانات في الزمن الحقيقي.

  4. ما هي التحسينات المقترحة على الإطار المرجعي للبيانات الكبيرة؟

    تقترح الأطروحة إضافة طبقة دعم القرار إلى الإطار المرجعي للبيانات الكبيرة لتحسين عملية اتخاذ القرار في الزمن الحقيقي، وذلك من خلال تحليل نتائج البيانات وتقديم توصيات ديناميكية لتحديث مواقع الزبائن.


References used
Bob Fox, Rob van den Dam and Rebecca Shockley, Analytics: Real-world use of big data in telecommunications, 2013
Tsang, M., Ho, S.-C., & Liang, T.-P. (2004). Consumer Attitudes Toward Mobile Advertising:An Empirical Study. International Journal of Electronic Commerce / Spring, 8, No.(3), 65–78
Min , C., Shiwen, M., & Yunhao , L. (2014). Big Data: A Survey. Mobile Networks and Applications, 19(2), 171-209
rate research

Read More

The study aimed to study the relationship between the use of the Syrian mobile telecommunications companies' customers for social media (Facebook) for marketing purposes, and their ability to influence customers at each stage of the purchase proces s, which includes:: the generation phase of the need, the stage of the search for alternatives, the stage of evaluating the alternatives, the stage of making the purchase decision, and the post-purchase phase. In order to achieve this, a main hypothesis was formulated with five sub-hypotheses. The researcher used the questionnaire technique to collect the data analyzed using statistical tests, the most important being the one-sample T. test and the Pearson Correlation test. The researcher has reached several results, the most important of which is: There is a strong positive correlation between the use of the Syrian mobile telecommunications companies' customers for social media (Facebook) for marketing purposes and all stages of the purchase process.
location-based service applications have become increasingly popular in recent years as the increased use of these services has prompted researchers to pay attention to many factors affecting quality of service, such as accuracy, availability, respon siveness, and power consumption. In this paper an analytical study of these factors was presented and a series of adaptive solutions were introduced that significantly reduce energy consumption, thus increasing the efficiency of location-based service applications.
Through this study we will explain the application of data mining and business intelligence using the data existed in the library of the Arab International University. This data has been linked to the data of the students on the academic system of the university. The study will also answer questions that affect the work of the educational institution in general and the library in particular, propose solutions to improve the work of the library and its services, enhance library working methods, and specify indicators related to the role of information resources in the educational operation.
Most robotic industries depend on using (servo motors) and (stepper motors) orcontinuous current motors (DC motors) for movement transition, which increases the cost and complicates the robot’s controlling process, as well as its driving circuits. This essay deals with using pneumatic in the new design and building of a robot’s arm, that can manage to do many tasks with a much lower budget than the one needed for any of the above mentioned methods, that’s because it can be used for tasks that need high speed and capacity, but don’t need precision.
Educational data mining aims to study the available data in the educational field and extract the hidden knowledge from it in order to benefit from this knowledge in enhancing the education process and making successful decisions that will improve th e student’s academic performance. This study proposes the use of data mining techniques to improve student performance prediction. Three classification algorithms (Naïve Bayes,J48, Support Vector Machine) were applied to the student performance database, and then a new classifier was designed to combine the results of those individual classifiers using Voting Method. The WEKA tool was used, which supports a lot of data mining algorithms and methods. The results show that the ensemble classifier has the highest accuracy for predicting students' levels compared to other classifiers, as it has achieved a recognition accuracy of 74.8084%. The simple k-means clustering algorithm was useful in grouping similar students into separate groups, thus understanding the characteristics of each group, which helps to lead and direct each group separately.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا