No Arabic abstract
I study the canonical formulation and quantization of some simple parametrized systems, including the non-relativistic parametrized particle and the relativistic parametrized particle. Using Diracs formalism I construct for each case the classical reduced phase space and study the dependence on the gauge fixing used. Two separate features of these systems can make this construction difficult: the actions are not invariant at the boundaries, and the constraints may have disconnected solution spaces. The relativistic particle is affected by both, while the non-relativistic particle displays only by the first. Analyzing the role of canonical transformations in the reduced phase space, I show that a change of gauge fixing is equivalent to a canonical transformation. In the relativistic case, quantization of one branch of the constraint at the time is applied and I analyze the electromagenetic backgrounds in which it is possible to quantize simultaneously both branches and still obtain a covariant unitary quantum theory. To preserve unitarity and space-time covariance, second quantization is needed unless there is no electric field. I motivate a definition of the inner product in all these cases and derive the Klein-Gordon inner product for the relativistic case. I construct phase space path integral representations for amplitudes for the BFV and the Faddeev path integrals, from which the path integrals in coordinate space (Faddeev-Popov and geometric path integrals) are derived.
Parity-violating (PV) gravity has recently attracted interest in several aspects. One of them is the axion-graviton coupling to test the axion-dark matter model. Moreover, by extending Chern-Simons (CS) gravity to include derivatives of a scalar field up to the second order, a more general class of PV gravity theory, which we call the CNCL model, has been proposed~[M. Crisostomi {it et al.}, Phys. Rev. D, {bf 97}, 044034 (2018)]. The model can be further extended by including even higher derivatives of the scalar field and/or higher curvature terms. In this paper, we discuss the effect of parity violation in the gravitational sector on the propagation of gravitational waves from binary coalescence by introducing a model-independent parametrization of modification. Our parametrization includes the CNCL model as well as CS gravity. The effect of parity violation on the gravitational waveform is maximum when the source binary orientation to our line of sight is edge-on, while the modified waveform reduces to the parity-symmetric one when the source is face-on. We perform a search for the signature of such modification by using the LIGO/Virgo O1/O2 catalog. We find that the catalog data is consistent with general relativity and obtain constraints on parity violation in gravity for various post-Newtonian order modifications for the first time. The obtained constraint on CS gravity is consistent with the results in previous works. On the other hand, the constraint on the CNCL model that we obtain is tighter than the previous results by roughly 7 orders of magnitude.
The parametrized black hole quasinormal ringdown formalism is useful to compute quasinormal mode (QNM) frequencies if a master equation for the gravitational perturbation around a black hole has a small deviation from the Regge-Wheeler or Zerilli equation. In this formalism, the deviation of QNM frequency from general relativity can be calculated by small deviation parameters and model independent coefficients. In this paper, we derive recursion relations for the model independent coefficients. Using these relations, the higher order coefficients are written only by the lower order coefficients. Thus, we only need the lower order coefficients when we numerically compute the model independent coefficients.
Whether gravity is quantized remains an open question. To shed light on this problem, various Gedankenexperiments have been proposed. One popular example is an interference experiment with a massive system that interacts gravitationally with another distant system, where an apparent paradox arises: even for space-like separation the outcome of the interference experiment depends on actions on the distant system, leading to a violation of either complementarity or no-signalling. A recent resolution shows that the paradox is avoided when quantizing gravitational radiation and including quantum fluctuations of the gravitational field. Here we show that the paradox in question can also be resolved without considering gravitational radiation, relying only on the Planck length as a limit on spatial resolution. Therefore, in contrast to conclusions previously drawn, we find that the necessity for a quantum field theory of gravity does not follow from so far considered Gedankenexperiments of this type. In addition, we point out that in the common realization of the setup the effects are governed by the mass octopole rather than the quadrupole. Our results highlight that no Gedankenexperiment to date compels a quantum field theory of gravity, in contrast to the electromagnetic case.
The classical electromagnetic and gravitomagnetic fields in the vacuum, in (3+2) dimensions, described by the Maxwell-Nordstrom equations, are quantized. These equations are rederived from the field tensor which follows from a five-dimensional form of the Dirac equation. The electromagnetic field depends on the customary time t, and the hypothetical gravitomagnetic field depends on the second time variable u. The total field energy is identified with the component T44 of the five-dimensional energy-stress tensor of the electromagnetic and gravitomagnetic fields. In the ground state, the electromagnetic field and the gravitomagnetic field energies cancel out. The quanta of the gravitomagnetic field have spin 1.
Trans-Planckian particles are elementary particles accelerated such that their energies surpass the Planck value. There are several reasons to believe that trans-Planckian particles do not represent independent degrees of freedom in Hilbert space, but they are controlled by the cis-Planckian particles. A way to learn more about the mechanisms at work here, is to study black hole horizons, starting from the scattering matrix Ansatz. By compactifying one of the three physical spacial dimensions, the scattering matrix Ansatz can be exploited more efficiently than before. The algebra of operators on a black hole horizon allows for a few distinct representations. It is found that this horizon can be seen as being built up from string bits with unit lengths, each of which being described by a representation of the SO(2,1) Lorentz group. We then demonstrate how the holographic principle works for this case, by constructing the operators corresponding to a field in space-time. The parameter t turns out to be quantized in Planckian units, divided by the period R of the compactified dimension.