The controllability of a network is a theoretical problem of relevance in a variety of contexts ranging from financial markets to the brain. Until now, network controllability has been characterized only on isolated networks, while the vast majority
of complex systems are formed by multilayer networks. Here we build a theoretical framework for the linear controllability of multilayer networks by mapping the problem into a combinatorial matching problem. We found that correlating the external signals in the different layers can significantly reduce the multiplex network robustness to node removal, as it can be seen in conjunction with a hybrid phase transition occurring in interacting Poisson networks. Moreover we observe that multilayer networks can stabilize the fully controllable multiplex network configuration that can be stable also when the full controllability of the single network is not stable.
Networks are topological and geometric structures used to describe systems as different as the Internet, the brain or the quantum structure of space-time. Here we define complex quantum network geometries, describing the underlying structure of growi
ng simplicial 2-complexes, i.e. simplicial complexes formed by triangles. These networks are geometric networks with energies of the links that grow according to a non-equilibrium dynamics. The evolution in time of the geometric networks is a classical evolution describing a given path of a path integral defining the evolution of quantum network states. The quantum network states are characterized by quantum occupation numbers that can be mapped respectively to the nodes, links, and triangles incident to each link of the network. We call the geometric networks describing the evolution of quantum network states the quantum geometric networks. The quantum geometric networks have many properties common to complex networks including small-world property, high clustering coefficient, high modularity, scale-free degree distribution.Moreover they can be distinguished between the Fermi-Dirac Network and the Bose-Einstein Network obeying respectively the Fermi-Dirac and Bose-Einstein statistics. We show that these networks can undergo structural phase transitions where the geometrical properties of the networks change drastically. Finally we comment on the relation between Quantum Complex Network Geometries, spin networks and triangulations.
Many complex systems can be described as multiplex networks in which the same nodes can interact with one another in different layers, thus forming a set of interacting and co-evolving networks. Examples of such multiplex systems are social networks
where people are involved in different types of relationships and interact through various forms of communication media. The ranking of nodes in multiplex networks is one of the most pressing and challenging tasks that research on complex networks is currently facing. When pairs of nodes can be connected through multiple links and in multiple layers, the ranking of nodes should necessarily reflect the importance of nodes in one layer as well as their importance in other interdependent layers. In this paper, we draw on the idea of biased random walks to define the Multiplex PageRank centrality measure in which the effects of the interplay between networks on the centrality of nodes are directly taken into account. In particular, depending on the intensity of the interaction between layers, we define the Additive, Multiplicative, Combined, and Neutr
Networks describe a variety of interacting complex systems in social science, biology and information technology. Usually the nodes of real networks are identified not only by their connections but also by some other characteristics. Examples of char
acteristics of nodes can be age, gender or nationality of a person in a social network, the abundance of proteins in the cell taking part in a protein-interaction networks or the geographical position of airports that are connected by directed flights. Integrating the information on the connections of each node with the information about its characteristics is crucial to discriminating between the essential and negligible characteristics of nodes for the structure of the network. In this paper we propose a general indicator, based on entropy measures, to quantify the dependence of a networks structure on a given set of features. We apply this method to social networks of friendships in US schools, to the protein-interaction network of Saccharomyces cerevisiae and to the US airport network, showing that the proposed measure provides information which complements other known measures.
A condensation transition was predicted for growing technological networks evolving by preferential attachment and competing quality of their nodes, as described by the fitness model. When this condensation occurs a node acquires a finite fraction
of all the links of the network. Earlier studies based on steady state degree distribution and on the mapping to Bose-Einstein condensation, were able to identify the critical point. Here we characterize the dynamics of condensation and we present evidence that below the condensation temperature there is a slow down of the dynamics and that a single node (not necessarily the best node in the network) emerges as the winner for very long times. The characteristic time t* at which this phenomenon occurs diverges both at the critical point and at $T -> 0$ when new links are attached deterministically to the highest quality node of the network.
In this paper we generalize the concept of random networks to describe networks with non trivial features by a statistical mechanics approach. This framework is able to describe ensembles of undirected, directed as well as weighted networks. These ne
tworks might have not trivial community structure or, in the case of networks embedded in a given space, non trivial distance dependence of the link probability. These ensembles are characterized by their entropy which evaluate the cardinality of networks in the ensemble. The general framework we present in this paper is able to describe microcanonical ensemble of networks as well as canonical or hidden variables network ensemble with significant implication for the formulation of network constructing algorithms. Moreover in the paper we define and and characterize in particular the structural entropy, i.e. the entropy of the ensembles of undirected uncorrelated simple networks with given degree sequence. We discuss the apparent paradox that scale-free degree distribution are characterized by having small structural entropy but are so widely encountered in natural, social and technological complex systems. We give the proof that while scale-free networks ensembles have small structural entropy, they also correspond to the most likely degree distribution with the corresponding value of the structural entropy.
We derive the spectral properties of adjacency matrix of complex networks and of their Laplacian by the replica method combined with a dynamical population algorithm. By assuming the order parameter to be a product of Gaussian distributions, the pres
ent theory provides a solution for the non linear integral equations for the spectra density in random matrix theory of the spectra of sparse random matrices making a step forward with respect to the effective medium approximation (EMA) . We extend these results also to weighted networks with weight-degree correlations
We study a statistical model describing the steady state distribution of the fluxes in a metabolic network. The resulting model on continuous variables can be solved by the cavity method. In particular analytical tractability is possible solving the
cavity equation over an ensemble of networks with the same degree distribution of the real metabolic network. The flux distribution that optimizes production of biomass has a fat tail with a power-law exponent independent on the structural properties of the underling network. These results are in complete agreement with the Flux-Balance-Analysis outcome of the same system and in qualitative agreement with the experimental results.
Previous work on undirected small-world networks established the paradigm that locally structured networks tend to have high density of short loops. On the other hand, many realistic networks are directed. Here we investigate the local organization o
f directed networks and find, surprisingly, that real networks often have very few short loops as compared to random models. We develop a theory and derive conditions for determining if a given network has more or less loops than its randomized counterpart. These findings carry broad implications for structural and dynamical processes sustained by directed networks.
Randomized network ensembles are the null models of real networks and are extensivelly used to compare a real system to a null hypothesis. In this paper we study network ensembles with the same degree distribution, the same degree-correlations or the
same community structure of any given real network. We characterize these randomized network ensembles by their entropy, i.e. the normalized logarithm of the total number of networks which are part of these ensembles. We estimate the entropy of randomized ensembles starting from a large set of real directed and undirected networks. We propose entropy as an indicator to assess the role of each structural feature in a given real network.We observe that the ensembles with fixed scale-free degree distribution have smaller entropy than the ensembles with homogeneous degree distribution indicating a higher level of order in scale-free networks.