ﻻ يوجد ملخص باللغة العربية
Recent Visual Question Answering (VQA) models have shown impressive performance on the VQA benchmark but remain sensitive to small linguistic variations in input questions. Existing approaches address this by augmenting the dataset with question paraphrases from visual question generation models or adversarial perturbations. These approaches use the combined data to learn an answer classifier by minimizing the standard cross-entropy loss. To more effectively leverage augmented data, we build on the recent success in contrastive learning. We propose a novel training paradigm (ConClaT) that optimizes both cross-entropy and contrastive losses. The contrastive loss encourages representations to be robust to linguistic variations in questions while the cross-entropy loss preserves the discriminative power of representations for answer prediction. We find that optimizing both losses -- either alternately or jointly -- is key to effective training. On the VQA-Rephrasings benchmark, which measures the VQA models answer consistency across human paraphrases of a question, ConClaT improves Consensus Score by 1 .63% over an improved baseline. In addition, on the standard VQA 2.0 benchmark, we improve the VQA accuracy by 0.78% overall. We also show that ConClaT is agnostic to the type of data-augmentation strategy used.
Existing VQA datasets contain questions with varying levels of complexity. While the majority of questions in these datasets require perception for recognizing existence, properties, and spatial relationships of entities, a significant portion of que
In this paper, we propose Text-Aware Pre-training (TAP) for Text-VQA and Text-Caption tasks. These two tasks aim at reading and understanding scene text in images for question answering and image caption generation, respectively. In contrast to the c
In this paper, we study fast training of adversarially robust models. From the analyses of the state-of-the-art defense method, i.e., the multi-step adversarial training, we hypothesize that the gradient magnitude links to the model robustness. Motiv
Current deep learning paradigms largely benefit from the tremendous amount of annotated data. However, the quality of the annotations often varies among labelers. Multi-observer studies have been conducted to study these annotation variances (by labe
Images shared on social media help crisis managers gain situational awareness and assess incurred damages, among other response tasks. As the volume and velocity of such content are typically high, real-time image classification has become an urgent