ﻻ يوجد ملخص باللغة العربية
Carpet-type structures constitute an ideal laboratory to study and analyze the robustness of the interference process that underlies this phenomenon against the harmful effects of decoherence. Here, without losing any generality, for simplicity, the case of a particle with a mass m is considered and described by a localized state corresponding to the ground state of a square box of width w, which is released inside a wider cavity (with a width L > w). The effects of decoherence are then numerically investigated by means of a simple dynamical model that captures the essential features of the phenomenon under Markovian conditions, leaving aside extra complications associated with a more detailed dynamical description of the system-environment interaction. As it is shown, this model takes into account and reproduces the fact that decoherence effects are stronger as energy levels become more separated (in energy), which translates into a progressive collapse of the energy density matrix to its main diagonal. However, because energy dissipation is not considered, an analogous behavior is not observed in the position representation, where a proper spatial localization of the probability density does not take place, but rather a delocalized distribution. This result emphasizes the fact that classicality is reached only if both decoherence and dissipation coexist; otherwise, non-classical traits might still persist. Actually, as it is also shown, in the position representation some off-diagonal correlations indeed survive unless an additional spatial-type factor is included in the model. This makes evident the rather complex nature of the decoherence phenomenon and hence the importance to have a familiarity with how it manifests in different representations, particularly with the purpose to determine and design reliable control mechanisms.
An unstable quantum state generally decays following an exponential law, as environmental decoherence is expected to prevent the decay products from recombining to reconstruct the initial state. Here we show the existence of deviations from exponenti
The counterintuitive features of quantum physics challenge many common-sense assumptions. In an interferometric quantum eraser experiment, one can actively choose whether or not to erase which-path information, a particle feature, of one quantum syst
Decoherence induced by coupling a system with an environment may display universal features. Here we demostrate that when the coupling to the system drives a quantum phase transition in the environment, the temporal decay of quantum coherences in the
The phenomenon of quantum erasure has long intrigued physicists, but has surprisingly found limited practical application. Here, we propose an erasure-based protocol for quantum key distribution (QKD) that promises inherent security against detector attacks.
Quantum plasmonic systems suffer from significant decoherence due to the intrinsically large dissipative and radiative dampings. Based on our quantum simulations via a quantum tensor network algorithm, we numerically demonstrate the mitigation of thi