ﻻ يوجد ملخص باللغة العربية
One--particle interchain hopping in a system of coupled Luttinger liquids is investigated by use of exact diagonalizations techniques. Firstly, the two chains problem of spinless fermions is studied in order to see the behaviour of the band splitting as a function of the exponent $alpha$ which characterizes the $1D$ Luttinger liquid. Moderate intra-chain interactions can lead to a strong reduction of this splitting. The on-set of the confinement within the individual chains (defined by a vanishing splitting) seems to be governed by $alpha$. We give numerical evidence that inter-chain coherent hopping can be totally suppressed for $alphasim 0.4$ or even smaller $alpha$ values. The transverse conductivty is shown to exhibit a strong incoherent part. Even when coherent inter-chain hopping is believed to occur (at small $alpha$ values), it is shown that the coherent Drude weight is always significantly smaller than the incoherent weight. Implications for the optical experiments in quasi-1D organic or high-$T_c$ superconductors is outlined.
The stability of the Luttinger liquid to small transverse hopping has been studied from several points of view. The renormalization group approach in particular has been criticized because it does not take explicitly into account the difference betwe
We study electronic phase competition in a system of three coupled spinless Luttinger liquids using abelian bosonization, together with a perturbative renormalization group (RG) analysis. The scaling procedure generates off-diagonal contributions to
We study systems of bosons whose low-energy excitations are located along a spherical submanifold of momentum space. We argue for the existence of gapless phases which we dub Bose-Luttinger liquids, which in some respects can be regarded as boson
Using functional renormalization group methods, we present a self-consistent calculation of the true Fermi momenta k_F^a (antibonding band) and k_F^b (bonding band) of two spinless interacting metallic chains coupled by small interchain hopping. In t
We investigate a one-dimensional electron liquid with two point scatterers of different strength. In the presence of electron interactions, the nonlinear conductance is shown to depend on the current direction. The resulting asymmetry of the transpor