ترغب بنشر مسار تعليمي؟ اضغط هنا

يهدف هذا البحث إلى دراسة تأثير إضافة العناصر السّبائكية و المعالجة الحرارية لمعدن الزنك في امتصاصيته للطاقة الشمسية, حيث تم تصنيع تسع سبائك أساسها الزنك وتم تغيير نسب إضافة النحاس والألمنيوم إلى الزنك النقي, وكانت نسب إضافة الألمنيوم (10% , 20% , 30% , 40% , 50%) و ذلك من أجل معرفة تأثير إضافة الألمنيوم إلى الزنك في امتصاصيته للطاقة الشمسية , و نسب إضافة النحاس (20% , 40%), كذلك تم تحضير عينتين من الزنك النقي درجة نقاوته 99.2% إحداهما مصنعة بطريقة التبريد السريع و الأخرى بطريقة التبريد البطيء و ذلك من أجل معرفة تأثير المعالجة الحرارية للزنك في امتصاصيته للإشعاع الشمسي . و من أجل قياس امتصاصية العينات المحضرة للإشعاع الشمسي تم تصنيع جهاز يعتمد على طرق التبادل الحراري بين الإشعاع الشمسي و السطح المعرض للإشعاع . بيّنت النتائج المستحصلة أنَّ إضافة كلاً من الألمنيوم و النّحاس إلى الزنك قلل امتصاصية الزنك للإشعاع الشمسي المباشر و إنَّ زيادة نسبة كل من المعدنيين المضافين إلى الزنك قلل من الامتصاصية بشكل مضطرد . كذلك بمقارنة امتصاصية عينتين من الزنك النقي أحدهما تم إنتاجها بطريقة التبريد السريع و الأخرى بطريقة التبريد البطيء تبين أن العينة التي تم إنتاجها بطريقة التبريد السريع امتصاصيتها أفضل للإشعاع الشمسي من العينة التي تم إنتاجها بطريقة التبريد البطيء .
في هذا البحث تم تحضير عينات من سبيكة الألمنيوم 6061 ، و بعد التحقق من تركيبها الكيميائي أجري عليها معالجة حرارية انحلالية عند الدرجة 530°C, و أتبع ذلك بسقاية جزء من العينات بالماء، و الجزء الآخر بالزيت، و من ثم إجراء التعتيق الصناعي على العينات ال مسقاة بتسخين العينات حتى الدرجة 160°C, وأزمان التعتيق المختارة (h 1,3,5)، و بذلك أصبح لدينا ستة نماذج من العينات و التي تختلف عن بعضها البعض بشروط المعالجة الحرارية، بالإضافة إلى العينة الأساس.
يتم انتاج قضبان التسليح في مصنع الشركة العربية لدرفلة الحديد آسكو، بمواصفات عالية من حيث المرونة و قوة الشد، التي تصل الى مستويات عالية، مقارنة باستخدام المعادن الخلائطية, و ذلك عن طريق استخدام المعالجة الحرارية بالتيرمكس أثناء العملية الانتاجية على خط الانتاج. المعالجة بالتيرمكس هي تعريض قضبان الفولاذ خلال العملية الانتاجية للماء بشكل مفاجئ ضمن ظروف انتاجية محددة و من ثم تتم عملية المراجعة الذاتية من خلال اعادة التسخين الذاتية بعد الخروج من التيرمكس و من ثم التبريد الطبيعي في درجة حرارة الجو المحيط, تتم هذه العملية على خط الانتاج بعد خروج الفولاذ من مرحلة الدرفلة النهائية, و تكون العملية ثابتة و مؤتمتة. تركزت الدراسة على التيرمكس و مكوناتة في المرحلة النهائية من عملية الدرفلة, و تأثيره على خواص الشد و القساوة لقضبان فولاذ التسليح.
نتيجة للتطور الصناعي الكبير الذي شيده العالم في كافة المجالات، سعى العلماء و الباحثون الى تصنيع مواد جديدة تمتلك خواص هندسية متميزة بتكلفة اقتصادية منخفضة بما يتناسب مع الاستخدامات و التطبيقات الصناعية المتعددة لذا قمنا بهذا البحث الحالي بتحضير مو اد مركبة ذات أساس معدني من سبيكة الألمنيوم مدعمة بدقائق تدعيم مختلفة حجمها من رتبة الميكرون من كربيد السيلكون و أكسيد التيتانيوم بنسب وزنية محددة بطريقة السباكة بالتحريك بهدف الحصول على ألمنيوم بخواص ميكانيكية مُحسنة.
نتيجة لتطور مجال استخدام المركّبات المدعمة بالألياف في التطبيقات العملية بشكل مستمر يهدف البحث الى دراسة تأثير نسبة المواد البيروكسيدية المضافة الى مادة البولي استر غير المشبع على خواص الشد لعينات محضرة من البولي الاستر غير المشبع المدعم بالألياف الز جاجية المستخدمة في تصنيع شفرات توربينات الرياح، و كذلك دراسة تأثير مدة تطبيق عمليات المعالجة الحرارية على تصلب البولي استر غير المشبع و خواص عملية الشد بعد تطبيق المعالجة الحرارية بهدف تحسين خواص هذه الشفرات. تم تحضير عينات اختبار تحتوي على نسب (1% - 1.5% - 2%) من المادة البيروكسيدية ميتيل ايتيل كيتون بيروكسيد MEKP و أظهرت نتائج الاختبار أن أفضل نسبة عند 1.5%. في حين أظهرت نتائج المعالجة الحرارية أن أفضل قيم لمقاومة الشد عند الانقطاع هي للعينات المعالجة لزمن قدره /48 hours/.
في هذا العمل, تم تجهيز سبائك من الألمنيوم – نحاس, حيث أُضيفت كميات من النحاس إلى الألمنيوم بنسب مختلفة ( 2.5- 4 - 4.5 ) بحيث لا تتعدى حد الإشباع للألمنيوم ( 6% نحاس ).
تم في هذه الدراسة تصميمُ خليةٍ شمسيةٍ بسيطةٍ و رخيصةٍ نسبياً من موادَّ متوفرة في السوق المحلّية, حيث تتكون هذه الخلية من الجسم الخارجي, و هو عبارة عن صندوق بلاستيكي على شكل متوازي مستطيلات مصنوع من مادة الأكريليك الشفاف يسمح بمرور الضوء, و يتمتع بالم رونة و المتانة العاليتين, و يحتوي على قطبين من النحاس الأحمر العالي النقاوة, حيث تم مُعالجة أحد هذين القطبين بالتسخين إلى درجات حرارة مُختلفة (400, 300, 200°C) باستخدام جهاز التسخين (Hot Plate) الأمر الذي أدى إلى تحول هذا القطب إلى نصف ناقل (أوكسيد النحاسي, Cu2O), بينما تُرِك القطب الآخر بلا معالجة. كما تمَّ تطوير الوسط الكهربائي الناقل ليصبح على هيئة بولي إلكتروليت (هيدروجلّ), و هكذا يتم تحرير الإلكترونات من القطب المُعالج أثناء سقوط الضوء إلى طبقة الهيدروجلّ, ثم إلى القطب النظيف غير المُعالج. لقد أظهرت النتائج أن جهد الخليّة يتناسب طرداً مع تركيز (البولي إلكتروليت) و مساحة سطح القطب المُعالج (أوكسيد النحاسي) المُعرّض للضوء, كما تُبيّن التجارب أنّ لدرجة الحرارة دوراً مهماً في تحويل الناقل المعدني إلى نصف ناقل, و كلما كان هذا التحويل ممكناً كانت حساسيّة القطب للضوء أكثر فعّاليّة و كفاءة.
طورت في أواخر الستينيات مجموعة جديدة من خلائط Z n – Al المناسبة للسباكة , و هي الخلائط ZA - 8 و ZA - 12 و ZA – 27 إِذ تمثل الأرقام النسبة المئوية التقريبية للألمنيوم الموجود في الخليطة، وتنافس هذه الخلائط حديد الصب وخلائط النحاس وخلائط الألمنيوم، و ت تميز الخليطة ZA‐ 27 بأنها الخليطة الأعلى متانة الأقل كثافة من باقي خلائط ZA و تتمتع بخواص فيزيائية و ميكانيكية جيدة (المتانة الجيدة، قابلية الصب الجيدة، سهولة التشغيل، خواص اهتراء جيدة و مقاومة تآكل مرتفعة). هدف هذا البحث إلى دراسة تأثير المعالجة الحرارية في بعض الخصائص الميكانيكية وانعكاسها على تحسين خواص الاهتراء لخليطة ZA‐ 27 . طبَقت المعالجة الحرارية من النوعT4 على الخليطة ZA‐ 27 و ذلك بالتسخين إلى درجة حرارة 370 و الإبقاء مدة 3 أو 5 ساعات و من ثم التغطيس في الماء، وبعد ذلك التعتيق الطبيعي في الهواء مدة 30 يومًا. أُجري اختبار الاهتراء الجاف على عينات من الخليطة ZA‐ 27 بعد السباكة دون أي معالجة و كذلك على عينات بعد تطبيق المعالجة الحرارية. فحصت البنية المجهرية لخليطة بعد الصب و بنيتها المجهرية بعد المعالجة الحرارية , فحصت البنية المجهرية للخليطة بعد الصب و بنيتها المجهرية بعد المعالجة الحرارية , و درس تأثير البنية المجهرية في سلوك الاهتراء. وجد أن قساوة الشد للعينات المعالجة حراريًا و متانتها تنخفض، في حين تزداد الاستطالة النسبية؛ و ذلك مقارنة بالخلائط بعد الصب، و لوحظ أن معدل انخفاض القساوة ثابت مع زيادة زمن المعالجة الانحلالية ويساوي تقريبًا ٪ 34.7 ، في حين وجد أنه بزيادة زمن المعالجة الانحلالية تنخفض المتانة و تزداد الاستطالة النسبية. بينت أيضًا الدراسة أن العينات المعالجة حراريًا تحقق تحسنًا كبيرًا بخواص الاهتراء مقارنة بالعينات بعد السباكة دون معالجة حرارية.
في هذا العمل تم إخضاع الفولاذ الكربوني CK85 إلى عملية معالجة حرارية تكرارية. تتألف هذه العملية من التثبيت لفترات قصيرة متكررة(min 3.4) عند درجة الحرارة C° 800 ( فوق درجة الحرارة Ac3 ) متبوعة بالتبريد الهوائي القسري. و بعد 8 دورات (حوالي ساعة من التس خين و التبريد المتكررين) تبين أن البنية المجهرية تحتوي في معظمها على حبيبات من الفريت و السمنتيت المتكور. تمتلك هذه البنية مزيجا من مقاومة الشد و المطيلية. إن تفكك صفائح البرليت أثناء انحلال السمنتيت على حدود الصفائح خلال هذه المدة القصيرة المثبتة فوق درجة الحرارة Ac3 و نشوء العيوب في الصفائح أثناء التبريد القسري غير المتوازن بالهواء كانا السببين الرئيسيين في تسريع عملية التكور . في البداية زادت مقاومة الشد بشكل رئيسي بسبب وجود الدقائق الصغيرة الناعمة ( الفريت و السمنتيت ) و من ثم انخفضت بشكل طفيف مع انعدام وجود صفائح البرليت و ظهور السمنتيت المتكور في البنية .
اكتسبت سبائك الألمنيوم أهمية صناعية بالغة منذ بداية القرن التاسع عشر حتى اليوم. فهي تدخل في العديد من الصناعات الخفيفة و الثقيلة، و يقسى الألمنيوم بإشابته و بالمعالجات الحرارية تبعـاً للتطبيقـات الصناعية المطلوبة. حضر في هذه الدراسة سبائك من الألمن يوم – نحاس (تحـوي 5.0 % مغنيـسيوم)، حيث أُضيفت كميات من النحاس إلى الألمنيوم بنسب 5.2% 4% 5.4% بحيث لا تتعـدى حـد التـشبع للألمنيوم و هي 6 % نحاس بغرض تقسية الألمنيوم. و بعد إضافة نسب معينة من النحاس إلـى الألمنيـوم تُصهر العينات (الألمنيوم مع النحاس) ليمتزجا تماماً بحيث تنتشر ذرات النحاس في الألمنيوم، و يتم الصب بطرائق و شروط معينة، و من ثم تعالج السبائك المحضرة حرارياً بالتزمين في المجال 8-30 ساعة حـسب الشروط المفروضة. و عند درجات حرارة معينة مفروضة أيضاً بغرض دراسة تغير القساوة تبعـاً لنـسبة النحاس و زمن المعالجة الحرارية. درس في هذا البحث تأثير دور النحاس في تقسية الألمنيوم و العوامـل الأخرى الأساسية اللازمة للحصول على أعلى قساوة ممكنة .
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا