ترغب بنشر مسار تعليمي؟ اضغط هنا

حقق نهج تكبير البيانات والضيقات الخصم مؤخرا نتائج واعدة في حل المشكلة المفرطة في العديد من مهام معالجة اللغة الطبيعية (NLP) بما في ذلك تصنيف المعنويات. ومع ذلك، فإن الدراسات الحالية التي تهدف إلى تحسين قدرة التعميم من خلال زيادة البيانات التدريبية مع أمثلة مرادفة أو إضافة ضوضاء عشوائية إلى Adgeddings Word، والتي لا يمكنها معالجة مشكلة الرابطة الزائفة. في هذا العمل، نقترح إطارا لتعزيز التعزيز نهاية إلى نهاية، والذي ينفذ بشكل مشترك توليد بيانات مضادة وتصنيف المعنويات المزدوجة. نهجنا لديه ثلاث خصائص: 1) يولد المولد تلقائيا جمل هائلة ومتنوعة؛ 2) يحتوي التمييز على مؤشر للمشاعر الجانبية الأصلية ومؤشر المعنويات الجانبية الناضجة، والذي يقوم بتقييم جودة العينة الناتجة بشكل مشترك ومساعدة المولد على توليد عينات مجفوف عالية الجودة أعلى جودة؛ 3) يتم استخدام التمييز مباشرة كقسم المعنويات النهائية دون الحاجة إلى بناء واحد إضافي. تظهر تجارب واسعة أن نهجنا يتفوق على خطوط خطوط خطوط تكبير البيانات قوية على العديد من مجموعات بيانات تصنيف المعفاة القياسية. يؤكد إجراء مزيد من التحليل بمزايا نهجنا في توليد عينات تدريب أكثر تنوعا وحل مشكلة الرابطة الزائفة في تصنيف المعنويات.
تلقت تصنيف النص الإشراف ضعيف اهتماما كبيرا في السنوات الأخيرة لأنه يمكن أن يخفف من العبء الثقيل في التخلص من البيانات الضخمة. من بينها، الأساليب التي يحركها الكلمات الرئيسية هي السائدة حيث يتم استغلال الكلمات الرئيسية التي توفرها المستخدم لتوليد ملصق ات زائفة للنصوص غير المسبقة. ومع ذلك، فإن الطرق الحالية تعالج الكلمات الرئيسية بشكل مستقل، وبالتالي تجاهل الارتباط بينها، والتي ينبغي أن تكون مفيدة إذا استغلت بشكل صحيح. في هذه الورقة، نقترح إطارا جديدا يسمى ClassKG لاستكشاف ارتباط الكلمات الرئيسية الكلمة الرئيسية على الرسم البياني للكلمة الرئيسية بواسطة GNN. إطار عملنا هو عملية تكرارية. في كل تكرار، نقوم أولا بإنشاء رسم بياني للكلمات الرئيسية، لذلك يتم تحويل مهمة تعيين ملصقات زائفة إلى التسجيل عبر الكلمات الرئيسية. لتحسين جودة التعليق التوضيحي، نقدم مهمة ذاتية الإشراف على الصنع بتقسيم Annetator Sigcraph، ثم Finetune IT. باستخدام الملصقات الزائفة التي تم إنشاؤها بواسطة Annotator Siggraph، ثم تدريب مصنف نصي لتصنيف النصوص غير المسبق. أخيرا، نعيد استخراج الكلمات الرئيسية من النصوص المبوبة. تظهر تجارب واسعة النطاق على كل من مجموعات البيانات الطويلة والنص القصير أن طريقتنا تتفوق بشكل كبير على تلك الموجودة.
نحن ندرس تصنيف التفضيل المقارن (CPC) الذي يهدف إلى التنبؤ بما إذا كان مقارنة الأفضلية موجودة بين كيانين في عقوبة معينة، وإذا كان الأمر كذلك، فهذا، يفضل الكيان على الآخر. يمكن أن نماذج CPC عالية الجودة تستفيد بشكل كبير تطبيقات مثل السؤال المقارن الرد التوصية القائمة على المراجعة. من بين الأساليب الحالية، تعاني أساليب التعلم غير العميقة من أداء أدنى. الرسم البياني لحديث الحديث في الشبكة العصبية المستندة إلى الشبكة (ما، و 2020) يعتبر فقط المعلومات النحوية مع تجاهل العلاقات الدلالية الحاسمة والمشاعر إلى الكيانات المقارنة. نقترح أن نقترح تحليل المعنويات الشبكة المقارنة المعززة (Saecon) الذي يحسن دقة الحزب الشيوعي الصيني مع محلل معنويات يتعلم المشاعر إلى الكيانات الفردية عبر نقل المعرفة التكيفية المجال. يجري التجارب على مجموعة بيانات Compsent-19 (Panchenko et al.، 2019) تحسنا كبيرا على درجات F1 على أفضل طرق CPC الحالية.
أظهرت التقدم المحدد في استخدام مكونات الاسترجاع على مصادر المعرفة الخارجية نتائج رائعة لمجموعة متنوعة من المهام المصب في معالجة اللغة الطبيعية.هنا، نستكشف استخدام مصادر المعرفة الخارجية غير منتهية للصور وتستياؤها المقابلة لتحسين الإجابة على السؤال ال مرئي (VQA).أولا، نحن ندرب نموذج محاذاة جديدة لتضمين الصور والتعليقات التوضيحية في نفس الفضاء، والذي يحقق تحسنا كبيرا في الأداء على استرجاع التعليق على الصورة W.r.T.طرق مماثلة.ثانيا، نظهر أن المحولات متعددة الوسائط متعددة الاسترجاع باستخدام نموذج المحاذاة المدربين يحسن النتائج على VQA عبر خطوط خطوط خطوط خطوط خطوط خطوط خطوط خطوط خطوط طويلة.كلنا إجراء تجارب مكثفة لإثبات وعد هذا النهج، وفحص طلبات جديدة لوقت الاستدلال مثل مؤشرات التبديلات الساخنة.
إن تطبيق تقنيات الترميز التنبؤية للنصوص القانونية لديه القدرة على تقليل تكلفة المراجعة القانونية للوثائق، ومع ذلك، هناك مثل هذه المجموعة الواسعة من المهام القانونية والتشريعات المتطورة باستمرار من الصعب بناء بيانات تدريبية كافية لتغطية جميعهاحالات.في هذه الورقة، نقوم بالتحقيق في طرق قليلة من الأساطير والرصاص التي تتطلب بيانات تدريب أقل بكثير وإدخال هندسة ثلاثية، والتي تنتج البيانات الإذنية أداء قريبة من نظام نظام إشرافي.تسمح هذه الطريقة بطرق ترميز التنبؤ أن يتم تطويرها بسرعة للوائح والأسواق الجديدة.
في تصنيف النص عبر اللغات، يطلب من أن البيانات التدريبية الخاصة بمهام المهام في لغات مصدر عالية الموارد متوفرة، حيث تكون المهمة مطابقة لتلك لغة مستهدفة منخفضة الموارد. ومع ذلك، يمكن أن يكون جمع هذه البيانات التدريبية غير ممكنة بسبب تكلفة العلامات وخصا ئص المهام ومخاوف الخصوصية. تقترح هذه الورقة حل بديل يستخدم فقط تضييق كلمة مهمة من المهام لغات الموارد عالية الموارد وقواميس ثنائية اللغة. أولا، نبني رسم بياني غير متجانس (DHG) من القواميس ثنائية اللغة. هذا يفتح إمكانية استخدام الشبكات العصبية الرسم البيانية للتحويل عبر اللغات. التحدي المتبقي هو عدم تجانس DHG لأنه يتم النظر في لغات متعددة. لمعالجة هذا التحدي، نقترح شبكة عصبية غير متجانسة مقرها القاموس (Dhgnet) التي تعالج بفعالية عدم تجانس DHG بشكل فعال بمقدار تجميعتين، وهي مجامعات على مستوى الكلمة ومستوى اللغة. توضح النتائج التجريبية أن أسلوبنا تفوق النماذج المحددة على الرغم من أنها لا تصل إلى كورسا كبيرة. علاوة على ذلك، يمكن أن يؤدي ذلك بشكل جيد على الرغم من أن القواميس تحتوي على العديد من الترجمات غير الصحيحة. تتيح قوتها لاستخدام مجموعة واسعة من القواميس مثل القاموس المصنوع تلقائيا وقاموس التعيد الجماعي، وهو أمر مناسب لتطبيقات العالم الحقيقي.
يتطلب تصنيف النوايا الإضافية تعيين ملصقات النوايا إلى الكلام الجزئي. ومع ذلك، لا تحتوي الكلام الجزئي بالضرورة على معلومات كافية يتم تعيينها إلى فئة النية من كلامها الكامل (بشكل صحيح وبدرجة معينة من الثقة). باستخدام التفسير النهائي كحقيقة أرضية لقياس دقة المصنف أثناء تصنيف النوايا للكلمات الجزئية مشكلة. نقوم بإصدار شامل، مجموعة بيانات من الكلام الجزئي والكامل مع شروح بشرية من علامات النية المعقولة عن أجزاء مختلفة من كل كلام، كأساس العلوي (البشري) لتصنيف النية الشديدة. نقوم بتحليل التعليقات التوضيحية الإضافية واقتراح تخفيض الانتروبيا كمقياس لتقارب المعلقين البشري بشأن تفسير (أي ملصق النية). نقول أنه عندما لا يتوقف المحن المعلقون على واحد أو قليل من التفسيرات المحتملة، ومع ذلك فإن المصنف يحدد بالفعل فئة النوايا النهائية في وقت مبكر، فهي علامة تجارية يمكن أن تعزى إلى القطع الأثرية في DataSet.
نقدم تصنيف التصنيف بتطبيع بالتناوب (CAN)، خطوة غير معالجة غير رسمية للتصنيف.يمكن أن يحسن دقة التصنيف للأمثلة الصعبة من خلال إعادة ضبط توزيع احتمالية الفئة المتوقعة باستخدام توزيعات الطبقة المتوقعة لأمثلة التحقق من الثقة عالية الثقة.يمكن أن ينطبق بسهو لة على أي مصنف الاحتمالية، مع الحد الأدنى من الحساب النفقات العامة.نقوم بتحليل خصائص يمكن استخدام تجارب محاكاة، وإظهار تجريبيا فعاليتها عبر مجموعة متنوعة من مهام التصنيف.
يتم جذب تصنيف المستندات متعددة الملصقات، وربط مثيل مستندات واحدة بمجموعة من الملصقات ذات الصلة، المزيد والمزيد من اهتمام البحوث. استكشاف الأساليب الحالية دمج المعلومات وراء النص، مثل بيانات تعريف الوثيقة أو هيكل الملصقات. ومع ذلك، فإن هذه الأساليب إم ا ببساطة الاستفادة من المعلومات الدلالية من البيانات الوصفية أو توظيف التسلسل الهرمي لملصق الوالدين والطفل المحدد مسبقا، وتجاهل الهياكل الرسومية غير المتجانسة للبيانات الوصفية والملصقات، والتي نعتقد أنها حاسمة لتصنيف مستندات دقيقة متعددة الملصقات. لذلك، في هذه الورقة، نقترح نهجا جديدا في الشبكة العصبية لتصنيف المستندات متعددة الملصقات، حيث يتم بناء الرسوم البيانية غير المتجانسة والتعلم باستخدام محولات الرسم البياني غير المتجانس. أحدهما هو الرسم البياني غير المتجانس في البيانات الأولية، والتي نماذج أنواع مختلفة من البيانات الوصفية وعلاقاتها الطوبولوجية. الآخر هو الرسم البياني الملصق غير المتجانس، الذي تم إنشاؤه بناء على كل من التسلسل الهرمي للملصقات والتمثيل الإحصائي. النتائج التجريبية على مجموعة من مجموعات البيانات القياسية تظهر النهج المقترح تفوق العديد من خطوط الأساس الحديثة.
في هذا العمل، نتعلم مشكلة تصنيف العالم المفتوح مع طريقة تسمى الدعاء، وفتح التصنيف العالمي عبر المثيلات التي تحولت بشكل تدريجي.هذه الطريقة الرواية والمساومة يمكن أن تنشئ مثيلات خارج المجال من مثيلات التدريب داخل المجال بمساعدة نموذج لغة تابعة مدرب مسب قا.تظهر النتائج التجريبية أن التصديح يؤدي إلى أفضل من طريقة العثور على قرارات القرار الحديثة.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا