ترغب بنشر مسار تعليمي؟ اضغط هنا

التنبؤ ارتباط السياقي المفتوح

Open-Domain Contextual Link Prediction and its Complementarity with Entailment Graphs

356   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

يحتوي الرسم البياني المعرفي المفتوح المجال (KG) على كيانات كعقد، وعلاقات اللغة الطبيعية كحواف، ويتم بناؤها عن طريق الاستخراج (الموضوع، العلاقة، كائن) ثلاث مرات من النص. مهمة التنبؤ ارتباط المجال المفتوح هو أن يستنتج العلاقات المفقودة في كجم. استخدم العمل السابق التنبؤ بالصلة القياسية للمهمة. نظرا لأن ثلاثة أضعاف استخراج من النص، فيمكننا أن ننظر إليها في السياق النصي الأكبر الذي تم العثور عليه أصلا. ومع ذلك، فإن أساليب التنبؤ بالصلة القياسية تعتمد فقط على هيكل KG وتجاهل السياق النصي الذي تم استخراج كل ثلاث مرات منه. في هذه الورقة، نقدم المهمة الجديدة لتنبؤ ارتباط السياق المفتوح الذي يمكنه الوصول إلى كل من السياق النصي وبنية كجم لإجراء تنبؤ الارتباط. نحن نبني مجموعة بيانات للمهمة واقتراح نموذج لذلك. تظهر تجاربنا أن السياق أمر حاسم في التنبؤ بالعلاقات المفقودة. كما نوضح فائدة التنبؤ بالوصلة السياقية في اكتشاف الاستراتيجية المستقلة للسياق بين العلاقات، في شكل رسوم بيانية استقامة (على سبيل المثال)، والتي تكون فيها العقد العلاقات. تعقد العكس أيضا: المساعدات المستقلة للسياق EGS في التنبؤ بالعلاقات في السياق.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

تمكين أنظمة حوار المجال المفتوح لطرح أسئلة توضيحية عند الاقتضاء هو اتجاه مهم لتحسين جودة استجابة النظام.وهي، بالنسبة للحالات عندما يكون طلب المستخدم غير محددا لنظام محادثة لتوفير إجابة على الفور، فمن المستحسن طرح سؤال توضيحي لزيادة فرص استرداد إجابة مرضية.لمعالجة مشكلة توضيح الأسئلة في الحوارات المفتوحة في الحوارات ": (1) نجمع وتحرير مجموعة بيانات جديدة تركز على المحادثات المفتوحة ومتعددة الدورات، (2) نحن معيارا عدة حالاتخطوط الأساس العصبية الفن، و (3) نقترح خط أنابيب يتكون من خطوات غير متصلة بالإنترنت وعلى الإنترنت لتقييم جودة توضيح الأسئلة في حوارات مختلفة.هذه المساهمات مناسبة كمؤسسة لمزيد من البحث.
يسأل الأسئلة المفتوحة الإجابة على تحديد إجابات الأسئلة التي أنشأتها المستخدم في مجموعات ضخمة من المستندات. أساليب Readriever-Reverse Graph النهج هي أسران كبيرتان من الحلول لهذه المهمة. يطبق قارئ المسترد أولا تقنيات استرجاع المعلومات للحصول على تحديد عدد قليل من الممرات التي من المحتمل أن تكون ذات صلة، ثم تغذي النص المسترد إلى قارئ شبكة عصبي لاستخراج الإجابة. بدلا من ذلك، يمكن بناء الرسوم البيانية المعرفة واستفسارها للإجابة على أسئلة المستخدمين. نقترح خوارزمية مع تصميم رواية Reader-Reader - يختلف عن كل من العائلات. يستخدم Reader-Retriever أولا قارئ حاليا لقراءة الكائن وإنشاء مجموعات من جميع الأسئلة المجدية المرتبطة بإجاباتهم، ثم يستخدم المسترد عبر الإنترنت للاستجابة لاستعلامات المستخدم من خلال البحث في مساحات الأسئلة التي تم إنشاؤها مسبقا للحصول على إجابات أكثر احتمالا أن يطلب في الطريقة المحددة. ندمج مزيد من الجمع بين قارئ المسترجع واحد واسترجاع القارئين في نموذج هجين يسمى R6 لأفضل أداء. تبين تجارب مع مجموعة بيانات عامة واسعة النطاق أن R6 يحقق دقة حديثة.
حققت استرجاع النص العصبي الكثيف نتائج واعدة حول السؤال المفتوح للنطاق الرد (QA)، حيث يتم استغلال تمثيلات كامنة للأسئلة والمراجيات للحصول على أقصى قدر من البحث الداخلي في عملية الاسترجاع. ومع ذلك، فإن المستردات الكثيفة الحالية تتطلب تقسيم المستندات إل ى مقاطع قصيرة تحتوي عادة على سياق محلي جزئي ومحازي في بعض الأحيان، وتعتمد بشدة على عملية تقسيم. ونتيجة لذلك، قد تسفر عن تعويضات مخفية غير دقيقة ومضللة، مما تدهور نتيجة الاسترجاع النهائي. في هذا العمل، نقترح استرجاع هرمي هرمي كثيف (DHR)، وهو إطار هرمي يمكنه إنشاء تمثيلات كثيفة دقيقة من الممرات من خلال الاستفادة من كل من الدلالات الكبيرة في الوثيقة والدليل المجهري المحدد لكل مقطع. على وجه التحديد، يحدد المسترد على مستوى المستند أولا المستندات ذات الصلة، من بينها يتم استرداد المقاطع ذات الصلة من خلال المسترد لمستوى المقاطع. سيتم معايرة ترتيب الممرات المستردة من خلال دراسة أهمية مستوى الوثيقة. بالإضافة إلى ذلك، يتم التحقيق في هيكل العنوان الهرمي واستراتيجيات أخذ العينات السلبية (I.E.، في السلبيات في السلبيات) في السلبيات). نطبق DHR إلى مجموعات بيانات QA مفتوحة على نطاق واسع. تتفوق DHR بشكل كبير على استرداد المقطع الكثيف الأصلي، ويساعد نظام ضمان الجودة في نهاية إلى نهاية يتفوق على الأساس القوي على معايير QA متعددة النطاق.
الهدف الشامل من معالجة اللغة الطبيعية هو تمكين الآلات من التواصل بسلاسة مع البشر.ومع ذلك، يمكن أن تكون اللغة الطبيعية غامضة أو غير واضحة.في حالات عدم اليقين، يشارك البشر في عملية تفاعلية تعرف باسم الإصلاح: طرح الأسئلة والسعي للحصول على توضيح حتى يتم حل حالة عدم اليقين.نقترح إطارا لبناء نموذج لسؤال أسئلة بصريا قادرة على إنتاج أسئلة توضيحات القطبية (نعم لا) لحل سوء الفهم في الحوار.يستخدم نموذجنا هدف معلومات متوقعة اكتبا لصالح أسئلة مفيدة من Captioner صورة خارج الرف دون الحاجة إلى أي بيانات للإجابة على الأسئلة الخاضعة للإشراف.نوضح قدرة النموذج لدينا على طرح الأسئلة التي تحسن النجاح التواصل في لعبة 20 أسئلة موجهة نحو الأهداف مع الإجابات الاصطناعية والإنسانية.
في هذه الورقة، نقترح نموذجا مقرا له عناية سياقية مع تدريبات دقيقة على مرحلتين باستخدام روبرتا.أولا، نقوم بإجراء النغمة الجميلة في المرحلة الأولى على Corpus مع روبرتا، بحيث يمكن للنموذج أن يتعلم بعض المعرفة المسبقة المجال.ثم نحصل على التضمين السياقي ب كلمات السياق بناء على التضمين على مستوى الرمز المميز مع النموذج الدقيق.ونحن نستخدم KFOFT التحقق من الصحة للحصول على نماذج K وفرقة لهم للحصول على النتيجة النهائية.أخيرا، نحن نحصل على المركز الثاني في مرحلة التقييم النهائي من المهمة الفرعية 2 مع ارتباط بيرسون ب 0.8575.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا