ترغب بنشر مسار تعليمي؟ اضغط هنا

الكيانات المتعلقة بالأحداث والأحداث في النص هي مكون رئيسي لفهم اللغة الطبيعية.دقة Coreference Coreference، على وجه الخصوص، أمر مهم بالنسبة للمصلحة المتزايدة بمهام تحليل المستندات متعددة الوثائق.في هذا العمل، نقترح نموذجا جديدا يمتد نموذج التنبؤ المتس لسل الفعال لتحليل Corefery لإعدادات تبادل المستندات وتحقق نتائج تنافسية لكلا كلا كلا كائن الكيان والحدث مع توفير أدلة قوية على فعالية كل من النماذج المتسلسلة والاستدلال المرتفعإعدادات الوثيقة عبر المستندات.يتطلب نموذجنا بشكل تدريجي يذكر في تمثيل الكتلة ويتوقع الروابط بين الإشارة والمجموعات التي تم إنشاؤها بالفعل، تقريب نموذج أعلى للترتيب.بالإضافة إلى ذلك، نقوم بإجراء دراسات بديلة الأزمة التي توفر رؤى جديدة في أهمية مختلف المدخلات وأنواع التمثيل في Courceer.
دقة Aqueference Coreference Coreence هي مهمة مؤسسية لتطبيقات NLP التي تنطوي على معالجة النص المتعدد. ومع ذلك، فإن شركة كوربيا الحالية لهذه المهمة نادرة وصغيرة نسبيا، بينما تعلق فقط مجموعات من المستندات المتواضعة فقط من الوثائق التي تنتمي إلى نفس المو ضوع. لاستكمال هذه الموارد وتعزيز البحوث المستقبلية، نقدم حفل الحدث في ويكيبيديا (WEC)، وهي منهجية فعالة لجمع مجموعة بيانات واسعة النطاق لحدث الحدث عبر المستندات من ويكيبيديا، حيث لا يتم تقييد روابط Coreference داخل مواضيع محددة مسبقا. نحن نطبق هذه المنهجية على Wikipedia الإنجليزية واستخراج مجموعة بيانات WEC-ENG الواسعة النطاق. وخاصة، طريقة إنشاء DataSet لدينا عام ويمكن تطبيقها مع القليل من الجهود الأخرى لغات ويكيبيديا الأخرى. لضبط نتائج خط الأساس، نقوم بتطوير خوارزمية تتكيف مع مكونات النماذج الحديثة في دقة COMERACARY داخل الوثيقة إلى إعداد المستندات عبر المستندات. النموذج لدينا هو فعال بشكل مناسب وتفوق النتائج التي تم نشرها سابقا من النتائج التي تم نشرها مسبقا للمهمة.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا