في السنوات القليلة الماضية، تم اقتراح العديد من الطرق لبناء تضمين التوطين.كان الهدف العام هو الحصول على تمثيلات جديدة تدمج المعرفة التكميلية من مختلف المدينات المدربة مسبقا مما يؤدي إلى تحسين الجودة الشاملة.ومع ذلك، تم تقييم Enterpaintings Meta-embed
dings السابق باستخدام مجموعة متنوعة من الأساليب ومجموعات البيانات، مما يجعل من الصعب استخلاص استنتاجات ذات مغزى بشأن مزايا كل منهج.في هذه الورقة نقترح إطارا مشتركا موحدا، بما في ذلك المهام الجوهرية والخارجية، من أجل تقييم عادل وموضوعي لتقييم التوطين.علاوة على ذلك، نقدم طريقة جديدة لتوليد تضمين التوطين، مما يفوقن العمل السابق على عدد كبير من معايير التقييم الجوهرية.كما يتيح لنا إطار التقييم أن نستنتج أن التقييمات الخارجية السابقة للمضفة المتمثلة في المبالغة في تقديرها.
تقدم هذه الورقة تقييما مقارنا لأربعة أنظمة ASR التجارية التي يتم تقييمها وفقا لجهود التحرير المطلوبة للوصول إلى "الجودة" القابلة للنشر ووفقا لعدد الأخطاء التي ينتجونها.لمهمة التوضيحية الخطأ، يتم اقتراح نموذج خطأ أخطاء خطأ في النسخ.تسعى هذه الدراسة أي
ضا إلى فحص ما إذا كان هناك اختلاف في أداء هذه الأنظمة بين المتحدثين باللغة الإنجليزية الأصلية وغير الأصلية.تشير النتائج التجريبية إلى أنه من بين النظم الأربعة، تحصل Trint على أفضل الدرجات.ولوحظ أيضا أن معظم الأنظمة تؤدي بشكل ملحوظ بشكل ملحوظ مع مكبرات الصوت الأصلية وأن جميع الأنظمة أكثر عرضة لأخطاء الطلاقة.
تعد أساليب تفسير ما بعد الهوك فئة مهمة من الأساليب التي تساعد في فهم الأساس المنطقي وراء قرار النموذج المدربين.ولكن ما مدى فائدة المستخدمين النهائي نحو تحقيق مهمة معينة؟في هذه الورقة الرؤية، نقول الحاجة إلى معيار لتسهيل تقييمات فائدة أساليب تفسير ما
بعد المخصص.كخطوة أولى لهذه الغاية، فإننا نعدد العقارات المرغوبة التي يجب أن تمتلكها مثل هذا المعيار لمهمة تصحيح التصحيح النصوص النصية.بالإضافة إلى ذلك، نسلط الضوء على أن هذا المعيار يسهل ليس فقط تقييم فعالية التفسيرات ولكن أيضا كفاءتها.
التقييم للعديد من مهام فهم اللغة الطبيعية (NLU) مكسورة: النتيجة أنظمة غير موثوقة ومنحمة للغاية على المعايير القياسية التي توجد مساحة صغيرة للباحثين الذين يقومون بتطوير أنظمة أفضل لإظهار التحسينات الخاصة بهم.إن الاتجاه الأخير للتخلي عن معايير IID لصال
ح مجموعات الاختبارات التي تم إنشاؤها المشدة، خارج التوزيع تضمن أن النماذج الحالية ستؤدي بشكل سيء، ولكن في نهاية المطاف تحجب القدرات التي نريد قياس معاييرنا.في ورقة الموقف هذه، نضع أربعة معايير نجد أن معايير NLU يجب أن تلبي.نجرب أن معظم المعايير الحالية تفشل في هذه المعايير، وأن جمع البيانات العديفية لا يعالج سلبيا أسباب هذه الإخفاقات.بدلا من ذلك، سيتطلب استعادة النظام الإيكولوجي للتقييم الصحي تقدما ملحوظا في تصميم مجموعات البيانات القياسية، والموثوقية التي يتم عرضها معها، وحجمها، والطرق التي تتعاملون مع التحيز الاجتماعي.
نقدم DynaBench، وهي منصة مفتوحة المصدر لإنشاء مجموعة البيانات الديناميكية ومعيار النموذج.يعمل Dynabench في متصفح ويب ويدعم إنشاء DataSet Indictet من الإنسان والنموذج في الحلقة: يسعى المحلقون إلى إنشاء أمثلة سيتطلب من النموذج المستهدف، لكن شخص آخر لن
يفعله.في هذه الورقة، نجرب أن Dynabench يعالج حاجة حاسمة في مجتمعنا: تحقق النماذج المعاصرة بسرعة الأداء المتميز على المهام القياسية ولكن مع ذلك فشلت في أمثلة التحدي البسيطة وتعثرت في سيناريوهات العالم الحقيقي.من خلال Dynabench، يمكن إنشاء DataSet، تطوير النموذج، وتقييم النماذج إبلاغ بعضها البعض مباشرة، مما يؤدي إلى معايير أكثر قوة وغنية بالمعلومات.نقوم بالإبلاغ عن أربع مهام NLP الأولي، مما يوضح هذه المفاهيم وتسليط الضوء على وعد المنصة، ومعالجة الاعتراضات المحتملة على المعايير الديناميكية كمعيار جديد للحقل.
تم إدخال نماذج اللغة القائمة على المحولات خطوة ثورية لأبحاث معالجة اللغة الطبيعية (NLP). أدت هذه النماذج، مثل Bert، GPT و Electra، إلى أداء أحدث في العديد من مهام NLP. تم تطوير معظم هذه النماذج في البداية للغة الإنجليزية ولغات أخرى تبعها لاحقا. في ال
آونة الأخيرة، بدأت عدة نماذج عربية خاصة الناشئة. ومع ذلك، هناك مقارنات محدودة مباشرة بين هذه النماذج. في هذه الورقة، نقيم أداء 24 من هذه النماذج على المعنويات العربية والكشف عن السخرية. تظهر نتائجنا أن النماذج التي تحققت أفضل أداء هي تلك التي يتم تدريبها على البيانات العربية فقط، بما في ذلك اللغة العربية ذاتي، واستخدام عدد أكبر من المعلمات، مثل Marbert صدر مؤخرا. ومع ذلك، لاحظنا أن ARAELECTRA هي واحدة من أفضل النماذج الأدائية بينما تكون أكثر كفاءة في تكلفتها الحسابية. أخيرا، أظهرت التجارب على المتغيرات Aragpt2 أداء منخفضة مقارنة بنماذج Bert، مما يشير إلى أنه قد لا يكون مناسبا لمهام التصنيف.
يهدف البحث بشكل رئيسي إلى دراسة أسلوب المقارنة المرجعية ككوسيلة للتحسين المستمر للجودة و إمكانية تطبيقه في المصارف السورية, و التعرف على صعوبات التطبيق لإيجاد الحلول المناسبة.
يهدف البحث بشكل رئيسي إلى دراسة أسلوب المقارنة المرجعية Benchmarking و إمكانية تطبيقه في المصارف السورية, و التعرف على صعوبات التطبيق لإيجاد الحلول المناسبة, و لتحقيق ذلك قامت الباحثة بإجراء دراسة نظرية موسعة.