ترغب بنشر مسار تعليمي؟ اضغط هنا

إن تأطير مقالة إخبارية تعني تصوير الحدث المبلغ عنها من منظور محدد، على سبيل المثال، من منظور اقتصادي أو صحي. Reframing وسائل لتغيير هذا المنظور. اعتمادا على الجمهور أو الحضور، يمكن أن تصادف REFRIMING ضرورية لتحقيق التأثير المرغوب على القراء. يرتبط Re framing بتكييف الأسلوب والشاعر، والتي يمكن معالجة تقنيات توليد النص العصبي. ومع ذلك، فإن الأمر أكثر تحديا لأن تغيير الإطار يتطلب إعادة كتابة الجمل بأكملها بدلا من عبارات واحدة. في هذه الورقة، ندرس كيفية إعادة صياغة الجمل في مقالات إخبارية مع الحفاظ على تماسكها إلى السياق. نتعامل مع REMREMING كمركز ملء على مستوى الجملة الذي نربط النماذج العصبية على كوربوس موجود للإطار الوسائط. لتوجيه التدريب، نقترح ثلاث استراتيجيات: محاكمة اللغة المؤطرة، والحفاظ على الكيانات المسماة، والتعلم الخصم. نقوم بتقييم النماذج المعنية تلقائيا وتدويا من أجل اتساق الموضوع والتماسك والتعداد الناجح. تشير نتائجنا إلى أن إنشاء نص مؤطر بشكل صحيح يعمل بشكل جيد ولكن مع المفاضلات.
أظهر العمل السابق أن الإشراف الهيكلية يساعد نماذج اللغة الإنجليزية على تعلم التعميمات حول الظواهر النحوية مثل اتفاقية الفعل الفعل. ومع ذلك، فإنه لا يزال غير واضح إذا كان مثل هذا التحيز الاستقرائي ستحسن أيضا قدرة نماذج اللغة على تعلم التبعيات النحوية بلغات مختلفة من الناحية النموذجية. نحن هنا التحقيق في هذا السؤال في لغة الماندرين الصينية، والتي لديها نظام كتابة من مقدم من لفائف التروج، إلى حد كبير؛ ترتيب كلمة مختلفة و sparser التشكل من الإنجليزية. نحن ندرب LSTMS، ونواسيب الشبكة العصبية المتكررة، ونماذج لغة المحولات، ونماذج تحليل التلال المعلمة للمحول على مجموعات بيانات ماندرين الصينية بأحجام مختلفة. نقيم قدرة النماذج على تعلم جوانب مختلفة من قواعد اللغة الماندرين التي تقييم العلاقات النحوية والدالة. نجد أدلة منهية أن الإشراف الهيكلية يساعد في تمثيل الحالة النحوية عبر المحتوى المتداخلة ويحسن الأداء في إعدادات البيانات المنخفضة، مما يشير إلى أن فوائد التحيزات الاستقرائي التسلسل الهرمي في الحصول على علاقات التبعية قد تتجاوز الإنجليزية.
تعمل السابقة على جيل إعادة صياغة صياغة يتم التحكم فيها بشكل كبير على بيانات إعادة صياغة مباشرة على نطاق واسع غير متوفرة بسهولة للعديد من اللغات والمجالات. في هذه الورقة، نأخذ هذا الاتجاه البحثي إلى أقصى الحدود والتحقيق فيما إذا كان من الممكن تعلم تول يد الصياغة التي يتم التحكم فيها بموجبها مع بيانات غير صلبية. نقترح نموذج إعادة صياغة غير مدهش من غير المستنير عليه بناء على التشفير التلقائي الشرطي (VAE) يمكن أن تولد نصوص في بنية نصنية محددة. خاصة، نقوم بتصميم طريقة تعليمية من مرحلتين لتدريب النموذج بفعالية باستخدام البيانات غير الموازية. يتم تدريب VAE الشرطية على إعادة بناء جملة الإدخال وفقا للإدخال المحدد والهيكل النحامي. علاوة على ذلك، لتحسين قابلية التحكم في النحوية والاتساق الدلالي لشركة VAE الشرطية المدربة مسبقا، نحن نغتنمها باستخدام أهداف التعلم السيطرة على بناء الجملة وإعادة إعمار دورة إعادة إعمار، وتوظيف Gumbel-Softmax الجمع بين أهداف التعلم الجديدة هذه. توضح نتائج التجربة أن النموذج المقترح المدرب فقط على البيانات غير الموازية قادر على توليد صیر متنوعة مع بنية نصنية محددة. بالإضافة إلى ذلك، نحن نقوم بالتحقق من صحة فعالية طريقتنا لتوليد أمثلة خصومة النحوية على مهمة تحليل المعنويات.
تزايد نماذج اللغة المدربة مسبقا للمحولات أداء أنظمة حوار المجال المفتوح. Works Prefer Works Simply القائمة على تحويلات قائمة مدربة مسبقا لتوليد النصوص ذات السمات المرغوبة في نهجين عامين: (1) الأساليب القائمة على التدرج: تحديث جميع التمثيلات الكامنة ل لنماذج المدربة مسبقا مع تدرجات من نماذج السمة؛ (2) طرق فك التشفير المرجح: إعادة ترتيب المرشحين من النماذج المدربة مسبقا مع وظائف السمة. ومع ذلك، تؤدي الأساليب المستندة إلى التدرج إلى تكلفة حساب مرتفعة ويمكن بسهولة الحصول عليها بسهولة على مجموعات تدريبية صغيرة، في حين أن طرق فك التشفير المرجحة تعاني بطبيعتها بطبيعتها النموذج المتدرب المحلي المنخفض. في هذا العمل، نقترح نهجا جديدا للتحكم في جيل النماذج اللغوية المدربة مسبقا للمحولات: الإطار Sidecontrol، الذي يهدف إلى فقدان سمات التحكم الجديدة لفقدان إشارات تحكم مفيدة، ويبضاها تؤدي جيدا مع التدريب المحدود للغاية عينات. نقوم بتقييم أسلوبنا المقترح في مجموعات بيانات الحوار المفتوح للمجال المفتوحة، وتظهر النتائج أن إطار Sidecontrol يحتوي على مكافحة تحكم أفضل، وجودة جيل أعلى وكفاءة أفضل عينة من خطوط الأساس القائمة على التدرج والموزن.
أدت التطورات الأخيرة في الشبكات العصبية إلى التقدم في توليد البيانات إلى النص.ومع ذلك، فإن الافتقار إلى قدرة النماذج العصبية للسيطرة على هيكل الإخراج الذي تم إنشاؤه يمكن أن يحد في بعض تطبيقات العالم الحقيقي.في هذه الدراسة، نقترح إطارا جديدا لخطة الرو اية (Plangen) لتحسين قابلية تحكم نماذج البيانات النصية العصبية.يتم إجراء تجارب واسعة من التجارب والتحليلات على مجموعة من مجموعات البيانات القياسية، Totto و Webnlg.تظهر النتائج أن نموذجنا قادر على التحكم في كل من الجملة داخل الجملة وبنية الجملة بين الإخراج الناتج.علاوة على ذلك، تظهر المقارنات التجريبية ضد الأساليب السابقة من الأساليب السابقة أن نموذجنا يحسن جودة التوليد وكذلك تنوع الإخراج عند الحكم على التقييمات البشرية والآلية.
اكتسبت Chatbots Social Chatbots شعبية هائلة، وجاذبيتها لا تكمن فقط في قدرتها على الاستجابة للطلبات المتنوعة من المستخدمين، ولكن أيضا في القدرة على تطوير اتصال عاطفي مع المستخدمين. لتعزيز وتعزيز Chatbots الاجتماعي، نحتاج إلى التركيز على زيادة تفاعل ال مستخدم وتأخذ في الاعتبار كل من الحاصل الفكري والعاطفي في وكلاء المحادثة. لذلك، في هذا العمل، نقترح مهمة المعنويات تدرك العاطفة التي تسيطر عليها توليد الحوار الشخصية التي تمنح الجهاز القدرة على الاستجابة عاطفيا ووفقا لشخصية المستخدم. نظرا لأن المشاعر والعواطف مرتبطة بدرجة كبيرة، نستخدم معرفة المشاعر بالكلام السابق لتوليد الاستجابة العاطفية الصحيحة وفقا لشخص المستخدم. نقوم بتصميم إطار توليد حوار يستند إلى المحولات، ينشئ الردود الحساسة لعاطفة المستخدم ويتوافق مع الشخصية والشاعر أيضا. علاوة على ذلك، يتم تشفير معلومات الشخصية من قبل تشفير محول مختلف، إلى جانب تاريخ الحوار، يتم تغذيةها إلى وحدة فك الترميز لتوليد الاستجابات. ناهز DataSet PersonAchat مع معلومات المشاعر لتحسين جودة الاستجابة. تظهر النتائج التجريبية على DataStet Personachat أن الإطار المقترح يتفوق بشكل كبير على خطوط الأساس الحالية، مما يولد ردود عاطفية شخصية وفقا للمشاعر التي توفر اتصال عاطفي أفضل ورضا المستخدمين كما هو مطلوب في chatbot الاجتماعي.
نقترح على التمييز المستقبلي لتوليد (Fudge)، وسيلة مرنة وحيونية للجيل المسيطر الذي يتم التحكم فيه.بالنظر إلى نموذج G موجه مسبقا لتوليد النص من توزيع الفائدة، يتيح الافعال تكييف السمة المرغوبة A (على سبيل المثال، الشكلية) أثناء الوصول إلى تسجيل الدخول فقط إلى سجل الإخراج G فقط.تتعلم Fudge مؤشر سمة يعمل على تسلسل جزئي، ويستخدم مخرجات هذا المؤشر لضبط الاحتمالات الأصلية G.نظهر أن نماذج الهرج تطل على تحلل بايزي للتوزيع الشرطي ل G معين من السمة A.علاوة على ذلك، يمكن أن يؤدي fudge بسهولة تنبؤات للسمات المتعددة المرغوبة.نقوم بتقييم الهراء في ثلاث مهام --- الانتهاء من الإكمال في الشعر، والتحكم في الموضوع في توليد اللغة، وتغيير الشكليات في الترجمة الآلية - - ومراقبة المكاسب في جميع المهام الثلاث.
نحن نعتمد على الحجج في حياتنا اليومية لتسليم آرائنا وتساعدهم على الأدلة، مما يجعلها أكثر إقناعا بدورها.ومع ذلك، يمكن أن يكون العثور على والحجج وصياغة التحدي.في هذا العمل، نقدم Arg-Ctrl - نموذج لغوي لتوليد الوسيطة الذي يمكن التحكم فيه لتوليد حجج مستوى الجملة للموضوع والموقف والجانب.نحدد الكشف عن الجانب الوسيطة كطريقة ضرورية للسماح لهذا التحكم الدقيقة والتعبئة الجماعية بمجموعة بيانات مع 5،032 حجج مشروح مع جوانب.يوضح تقييمنا أن ARG-CTRL قادر على توليد حجج عالي الجودة وجزئي محددة، ينطبق على جيل الحجة المضادة التلقائي.نقوم بنشر الأوزان النموذجية وجميع مجموعات البيانات والرمز لتدريب ARG-CTRL.
حاولت هذه الدراسة بيان مشكلة الأثر الناجم عن وجود المعوضات التفرعية و التسلسلية في خطوط نقل القدرة الكهربائية في أداء حواكم الحماية المسافية التي تحمي هذه الخطوط. و من أجل بيان هذا الأثر استخدمت برمجيات تحليل الشبكات الكهربائية و بشكل خاص برنامج NEPL AN لدراسة سلوك الحاكمة المسافية بوجود مختلف أنواع المعوضات التفرعية و التسلسلية، و من أجل الأعطال الأساسية، و عند مواقع مختلفة من الخط المدروس. ي هذه الدراسة أجرِيت نمذجة شبكة نقل الطاقة السورية وفق NEPLAN و استخدمت معوضات تفرعية مثل STATCOM و تسلسلية مثل TCSC ومختلطة مثل UPFC لتعويض الاستطاعة الردية على خط النقل المحمي . و تُجرى النمذجة لكثير من الحالات، لبيان أثر نمط العطل و موضعه في قيمة الممانعة المقيسة من الحاكمة المسافية. و الغرض من تحديد أثر وجود المعوضات في ممانعة العطل المنظورة من الحاكمة المسافية (أي موضع العطل)، هو معرفة الاتجاهات الممكنة لحل لهذه المشكلة و تحسين أداء حمايات خطوط نقل الطاقة الكهربائية.
ضبط تحرر دواء كيتوبروفن عن طريق صياغته في أقراص قالب تحوي على مشاركة بين بلمرات مختلفة و بنسب متغايرة. هدفت هذه الدراسة إلى تقصي تأثير مشاركة مشتقات عديد الميثاكريلات مع بلمر محب للماء في ضبط تحرر كيتوبروفن من أقراص القالب إِذ اختبرت أربعة أنواع مختلفة اللزوجة من ال HPMC.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا